

Using helical flows to test difference schemes for Navier-Stokes equations

Ilshat T. Dulatov

Patrice Lumumba Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

e-mail: dulatov_it@pfur.ru

Received 15 November 2025, in final form 24 November 2025. Published 3 December 2025.

Abstract. Currently, a number of difference schemes are known that approximate the Navier-Stokes equations. Difference schemes are typically tested on two-dimensional problems, such as calculating the Karman street. However, three-dimensional flows present the greatest challenge. In the paper by V. P. Kovalev et al. (2017), two particular solutions to the Navier-Stokes equations were analytically described: the ABC solution and the Gromeka-Beltrami solutions. Both of these solutions describe helical flows, that is, flows in which the velocity $\operatorname{curl} \vec{v}$ is proportional to the velocity \vec{v} . These flows provide a natural test case for comparing the performance of different difference schemes. Here we present the results of testing the schemes from the paper by V. P. Gerdt et al. (2020) on these helical flows.

Keywords: Navier-Stokes equations, finite differences, Gromeka-Beltrami solutions

MSC numbers: 74S20

PACS numbers: 47.11.-j, 02.30.Jr, 02.60.Cb

References

- [1] Zhivotovsky B. A. Water discharge and interfacing structures with flow swirling (Vodosbrosnye i sopryagayushchie sooruzheniya s zakrutkoj potoka). — Moscow : RUDN, 1995. — In Russian.
- [2] Zhivotovsky B. A., Ponomarev N. K. Features recirculating flow in hydrocal facilities // Vestnik RUDN, seriya Inzhenernye issledovaniya. — 2013. — no. 1. — P. 17–22. — In Russian. Access mode: <https://journals.rudn.ru/engineering-researches/article/view/4731>.
- [3] Hecht F. FreeFem++. — 2018. — Access mode: www.freefem.org/ff++.
- [4] Belov I. A., Isaev S. A. Simulation of turbulent flows (Modelirovanie turbulentnyh techenij). — SPb, 2001. — In Russian.
- [5] Sadrehaghghi Ideen. Turbulence Modeling. A Review [Electronic resource]. — 2018. — Academia : [34106426](https://www.academia.edu/34106426).
- [6] Tkachenko E. V., Debolskiy A. V., Mortikov E. V. Intercomparison of subgrid scale models in large-eddy simulation of sunset atmospheric boundary layer turbulence: computational aspects // Lobachevskii Journal of Mathematics. — 2021. — Vol. 42, no. 7. — P. 15801595.
- [7] Gerdt V. P., Robertz D., Blinkov Yu. A. Strong consistency and Thomas decomposition of finite difference approximations to systems of partial differential equations [Electronic resource]. — 2020. — ArXiv : [2009.01731](https://arxiv.org/abs/2009.01731).
- [8] Kovalev V. P., Prosviryakov E. Yu., Sizykh G. B. Obtaining examples of exact solutions of the NavierStokes equations for helical flows by the method of summation of velocities // Trudy MFTI. — 2017. — Vol. 9, no. 1. — P. 71–88. — In Russian.
- [9] Blinkov Yu. A. Investigation of the Error of Finite Difference Schemes for the KdV Equation Using the First Differential Approximation // Polynomial Computer Algebra. — 2025. — Access mode: <https://pca.conf-pdmi.ru/2025>.
- [10] Khorin A. N. A family of exact solutions of the NavierStokes equations for the verification of computer programs // Trudy MFTI. — 2020. — Vol. 12, no. 4. — P. 80–89. — In Russian.
- [11] Sizykh G. B. The splitting of NavierStokes equations for a class of axisymmetric flows // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. — 2020. — Vol. 24, no. 1. — P. 163173. — In Russian.

[12] Kovalev V. P., Prosviryakov E. Yu. A new class of non-helical exact solutions of the NavierStokes equations // Vestn. Samar. Gos. Tekhn. Univ. — 2020. — Vol. 24, no. 4. — P. 762768.