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Abstract. Currently, a number of difference schemes are known that approx-
imate the Navier-Stokes equations. Difference schemes are typically tested on
two-dimensional problems, such as calculating the Karman street. However, three-
dimensional flows present the greatest challenge. In the paper by V. P. Kovalev
et al. (2017), two particular solutions to the Navier-Stokes equations were ana-
lytically described: the ABC solution and the Gromeka-Beltrami solutions. Both
of these solutions describe helical flows, that is, flows in which the velocity curl
curl~v is proportional to the velocity ~v. These flows provide a natural test case for
comparing the performance of different difference schemes. Here we present the
results of testing the schemes from the paper by V. P. Gerdt et al (2020) on these
helical flows.
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1 Introduction

The need to study complex three-dimensional incompressible fluid flows arises in
many applied problems. These include the problem of the structure of swirling
flow in a pipe and the coupling of a dam’s eddy flow with the downstream sur-
face, which have been extensively studied both theoretically and experimentally at
RUDN University [1, 2]. However, the numerical analysis of such flows still pre-
sents significant difficulties and necessitates the search for new numerical methods
for studying mathematical models of swirling flows.

Consider fluid flow in a certain domain G. We introduce a fixed Cartesian
coordinate system xyz. We denote the instantaneous fluid velocity at point (x, y, z)
at time t as ~v(x, y, z, t). The dynamics of the velocity field can be described by the
Navier-Stokes equations:

∂~v

∂t
= −(~v · ∇)~v + ν∆~v − 1

ρ
∇p, (1)

where ν is the kinematic viscosity coefficient, ρ is the density, and p is the pressure.
For water flow, ν and ρ can be considered known constants, while the pressure p
is, in addition to the three velocity components, another unknown function. This
results in three differential equations for four unknown functions. For an incom-
pressible fluid, these equations are supplemented by the continuity equation:

div~v = 0.

From a mathematical point of view, the Navier-Stokes equations are extremely
complex; even the existence and smoothness of a solution to the Navier-Stokes
equations in R3 has not yet been proven. Boundary value problems for partial
differential equations are rarely solved analytically, so numerical, primarily grid-
based, methods for solving differential equations are commonly used. Models based
on the numerical solution of the Navier-Stokes equations are known in the English-
language literature as Direct Numerical Simulation (DNS). These models are used
in academic research at low Reynolds numbers, especially for gaseous flows. An
example is the very popular two-dimensional problem of Karman street formation
[3, §9.6].

The use of grid methods implies that, at a scale of the order of the grid step,
the solution can be well approximated by linear functions. In turbulent problems,
this assumption is not met; the Navier-Stokes equations apparently describe fine
flow structure well and, for this reason, are very difficult to solve numerically using
the finite difference method.

In the last century, a whole family of semi-empirical models was proposed that
have proven themselves in engineering practice. Wilcox’s description of these mo-
dels has now become the standard; see also [4]. A classification of the various models
is provided in the review [5]. The main problem with semi-empirical models is the
need to select constants empirically. This problem is currently being addressed by
refining the parameters during calculations using the method described in [6].
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One possible way to preserve the scientific validity of models based on the
Navier-Stokes equations and accurately describe turbulent structures is to deve-
lop mimetic difference schemes for the Navier-Stokes equationsthat is, difference
schemes that accurately preserve certain structures associated with the Navier-
Stokes equations. A difference scheme approximating the Navier-Stokes equations
was proposed in [7], emulating the property of the Navier-Stokes equations that
their only nontrivial differential consequence is the Poisson equation for pressure.

This scheme has been tested on several plane flows, including the Karman street.
However, testing on three-dimensional flows, including swirling flows, is of greatest
interest. Two families of helical flows were analytically described in [8]. Furt-
hermore, the authors of this paper proposed using these flows to test difference
schemes.

We have developed and implemented a method in the Sage computer algebra
system that allows testing difference schemes, defined symbolically, on helical flows.
In this paper, we present our software and the results of its application to the scheme
from [7].

2 Helical flows

A helical flow is a flow for which

curl~v = k~v,

where k is a coefficient characterizing the swirl of the flow.
The ABC solution from Ref. [8, p. 75] is described by explicit expressions

u = m(A sin(kz) + C cos(ky)),

v = m(B sin(kx) + A cos(kz)),

w = m(C sin(ky) +B cos(kx)),

p = p0 −
u2 + v2 + w2

2
,

where
m = e−tk2/Re

These formulas are implemented in Sage in the standard way.

var(’x,y,z,t’)

var(’A,B,C,k,Re,p0’)

var(’dx,dy,dz,dt’)

m=exp(-t*k^2/Re)

u = (A*sin(k*z) + C*cos(k*y))*m

v = (B*sin(k*x) + A*cos(k*z))*m

w = (C*sin(k*y) + B*cos(k*x))*m

p = p0 - 1/2*(u^2+v^2+w^2)
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3 Defining a difference scheme in Sage

To define a difference scheme from [7], you must first define the difference operators:

Dt=lambda f: (f.subs(t=t+dt)-f)/dt

Dx=lambda f: (f.subs(x=x+dx)-f.subs(x=x-dx))/2/dx

Dy=lambda f: (f.subs(y=y+dy)-f.subs(y=y-dy))/2/dy

Dz=lambda f: (f.subs(z=z+dz)-f.subs(z=z-dz))/2/dz

Delta=lambda f: (f.subs(x=x+dx)+f.subs(x=x-dx)-2*f)/dx^2 + \

(f.subs(y=y+dy)+f.subs(y=y-dy)-2*f)/dy^2 + \

(f.subs(z=z+dz)+f.subs(z=z-dz)-2*f)/dz^2

It is easy to see that these formulas repeat formula (30) from Ref. [7] in the
Sage language. The difference scheme consists of 5 equations [7, Eqs. (34–35)].
Substituting the ABC solution into the first equation is done as follows:

Dx(u)+Dy(v)+Dz(w)

and returns 0. This means that the exact solution satisfies the first equation of the
difference scheme exactly. This is very good, since this equation expresses the mass
coservation law. The problems with satisfying this law when using semi-empirical
models are well known.

Substituting the solution into the second expression yields a rather complex
symbolic expression F1:

F1=Dt(u) + Dx(u^2) + Dy(u*v) + Dz(u*w) + Dx(p) - 1/Re*Delta(u)

We expand it as a power series in ∆t,∆x,∆y,∆z:

F1.taylor((dt,0),(dx,0),(dy,0),(dz,0),1).factor()

The leading term of the expansion of F1 can be written as

(C cos(ky) + A sin(kz))∆tk4e−
k2t
Re

2Re2
,

This expression can be estimated from above as

Mk4∆t

2Re2
, M =

√
A2 +B2 + C2. (2)

This shows that the second equation is satisfied up to terms of the order of ∆t.
This low order of approximation is due to the replacement of the derivative with
respect to t by the asymmetric operator Dt.

Similar expressions are obtained for F2 and F3. The residual in the last equation
of the scheme, which approximates the Poisson equation for pressure, is structured
differently. Substituting the ABC solution into it is done in the same way:
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F4=Dx(Dx(p))+Dy(Dy(p))+Dz(Dz(p))+Dx(Dx(u^2)) \

+ Dy(Dy(v^2)) + Dz(Dz(w^2)) \

+2*(Dx(Dy(u*v)) + Dx(Dz(u*w)) + Dy(Dz(v*w))) \

-1/Re*(Dx(Delta(u)) + Dy(Delta(v)) + Dz(Delta(w)))

However, the expansion of F4 into a series yields the sum of the 4th-order terms
with respect to ∆x,∆y, and ∆z as the leading terms. This sum can be estimated
from above as

M2k6

4
∆r4, ∆r =

√
∆x2 + ∆y2 + ∆z2. (3)

When choosing the step size, it is natural to try to make the expressions (2) and
(3) small. In this case, the equations approximating the Navier-Stokes equations
provide an estimate for the step ∆t, and the equation approximating the Poisson
equation provides an estimate for ∆r.

It should be noted that we are attempting to characterize the error in the
numerical determination of the solution by the residual. Recently, in a report by
Yu. A. Blinkov [9] the author proposed a very elegant method for recalculating
errors based on a known residual.

4 Conclusion

The calculations performed show that computer algebra systems can estimate re-
siduals in the execution of difference scheme equations, defined symbolically, using
analytical solutions. Based on these residuals, recommendations can be made for
choosing the time and space step.

A number of recent publications [10, 11, 12] have found new families of flows
that significantly expand the range of analytical solutions on which we can test the
proposed difference schemes.

Acknowledgements. The author is grateful to Prof. Yu.A. Blinkov (Saratov Uni-
versity), with whom we repeatedly discussed issues of designing difference schemes
for the Navier-Stokes equations in computer algebra systems.
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