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Abstract. The propagation of a monochromatic spherical wave emitted from
one of the foci of an ellipsoid and reflected at its boundary is considered. From
the point of view of geometric optics, the second focus of the ellipsoid should be a
singularity of the solution, since the wave reflected from the ellipsoid boundaries
“converges” there. In wave optics, on the contrary, no singularity can exist there.
The corresponding boundary value problem is formulated within the framework of
wave optics and solved using the finite element method. Computer experiments
were performed in FreeFem++, using a weak formulation of the problem in a
spherical coordinate system. A series of computer experiments demonstrate the
changes in this wave with increasing frequency. It is shown that, starting from
a certain frequency, a clearly expressed extremum appears in the region of the
second focus.
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1 Introduction

Consider an ellipsoid of revolution V . The simplest wave model describing waves
in such an ellipsoid is given by the boundary value problem{

∆u+ k2u = 0,

u|∂V = 0.
(1)

Place a spherical wave source at one of its foci

u′ = −e
ikr

r

and seek a solution of the problem (1) in the form

u = u′ + u′′,

where the term u′′ describes the response of the ellipse to the spherical wave. The
response satisfies the problem {

∆u′′ + k2u′′ = 0,

u′′|∂V = −u′.
(2)

This problem has a unique solution if k differs from the resonant values [1, §5.7.2].
Thus, within the framework of wave theory, the response can and should be consi-
dered regular.

From the point of view of geometric optics, the response will be a spherical wave
with a second focus as its center, that is, an internal singularity. For theoretical
reasons, linking geometric optics and wave optics in this case is extremely difficult,
since the effect depends on an infinite number of transformations, and the focal
point itself is singular.

We will attempt to use direct calculations to understand what happens to the re-
gular response in the vicinity of the second focus and thereby establish a connection
between the wave and geometric theories.

2 Imaginary part of the response

The imaginary part of the response can be written explicitly. Indeed, the original
wave is equal to

u′ = −e
ikr

r
= −cos kr

r
− isin kr

r
.

The imaginary part has no singularity at zero, and therefore the solution to the
problem {

∆v + k2v = 0,

v|∂V = sin kr
r
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is inevitably

v =
sin kr

r
.

This means that the imaginary part of the response is equal, up to the sign, to the
imaginary part of the original wave, and u = u′ + u′′ is real. This reasoning is not
applicable to the real part, since

−cos kr

r

has a singularity at zero, while u′′ does not.

3 On the numerical calculation of response

The numerical solution of the problem (2) is conveniently performed using the finite
element method [2, 3], which has proven itself well in problems of electrodynamics
[4]. We will use a free implementation of this method, the FreeFem++ system [5].

We will consider the ellipsoid of revolution in a spherical coordinate system,
placing its origin at the focus from which the spherical wave originates. The ellipsoid
is then described by the inequalities

0 < r <
p

1− e cos θ
, 0 < θ < π, 0 < φ < 2π.

To use the FreeFem++ system, it is necessary to rewrite the Helmholtz problem
in a generalized form and in a spherical coordinate system. Due to symmetry, the
solution to Helmholtz problem is independent of φ and is reduced to solving the
equation

1

r2
∂

∂r
r2
∂u′′

∂r
+

1

r2
1

sin θ

∂

∂θ
sin θ

∂u′′

∂θ
+ k2u′′ = 0

in a curvilinear trapezoid

0 < r <
p

1− e cos θ
, 0 < θ < π.

We define an arbitrary smooth function v, multiply the last equation by vr2 sin θ
and integrate over the trapezoid, then we obtain∫∫

V

(
v sin θ

∂

∂r
r2
∂u′′

∂r
+ v

∂

∂θ
sin θ

∂u′′

∂θ
+ k2vu′′r2 sin θ

)
dθdr = 0.

Integrating by parts, we transform the left-hand side to a sum of integrals over a
trapezoid, namely,

−
∫∫
V

(
r2 sin θ

∂v

∂r

∂u′′

∂r
+ sin θ

∂v

∂θ

∂u′′

∂θ
+ k2vu′′r2 sin θ

)
dθdr
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and integrals over the boundary of the trapezoid∫
∂V

(
nrr

2∂u
′′

∂r
+ nθ

∂u′′

∂θ

)
v sin θds.

If u′′ does not increase to infinity on the boundary, then on the sections θ = 0 and
θ = π, the integral over the boundary is zero due to sin θ = 0, and on the section
r = 0, ”— due to nθ = 0. Therefore, only a boundary segment remains

C : r =
p

1− e cos θ
, 0 < θ < π,

on which we must set the boundary condition

u′′ = u′.

When using the finite element method, this is achieved by setting a boundary
condition of the third kind

nrr
2∂u

′′

∂r
+ nθ

∂u′′

∂θ
+ h(u′′ − u′) = 0,

taking a very large h. As a result, we obtain the following weak statement of the
problem: find a function u ∈ W 1

2 (V ) such that∫∫
V

(
r2 sin θ

∂v

∂r

∂u′′

∂r
+ sin θ

∂v

∂θ

∂u′′

∂θ
+ k2vu′′r2 sin θ

)
dθdr+

+

∫
C

h(u′′ − u′)v sin θds = 0 ∀v ∈ W 1
2 (V ).

This problem can be easily solved using FEM in FreeFem++.

4 Computer experiment results

We took p = 1, e = 1
2

and h = 10−5, verifying that the solution remains unchanged
as h increases further.

In the figures below, Figs. 1–15, the abscissa axis is θ, and the ordinate axis is
r. The first focus is broken into the line r = 0 due to the transition to a spherical
coordinate system. The second focus lies on the θ = 0 axis at a distance from the
upper edge of the region equal to the width of the side θ = π.

For small k, noticeable humps appear on the ellipsoid axis: first one (k = 2),
then two (k = 5), then three (k = 6). Then comes the range 6 < k < 10, which
is difficult to describe in words. At k = 10, a clear and very noticeable extremum
appears in the region of the second focus. With further increase in k, this extremum
does not shift anywhere, but becomes increasingly sharper. At k = 13, the structure
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of the spherical wave emitted from the second focus is clearly visible. It should also
be noted that the position of the extremum lies slightly higher than the actual
focus.

For the same k but an oval other than an ellipsoid, the response has no such an
extremum. Sometimes the extremum center is in focus, and sometimes it is not.

As the eccentricity increases, the effect increases, but significantly more finite
elements must be used. Fig. 18 clearly shows a diverging wave emitted from the
second focus already at k = 10.

IsoValue
-0.281068
-0.171576
-0.0985809
-0.0255859
0.047409
0.120404
0.193399
0.266394
0.339389
0.412384
0.485379
0.558374
0.631369
0.704364
0.777359
0.850354
0.923349
0.996343
1.06934
1.25183

Figure 1: Response plot for k = 1
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IsoValue
-1.86598
-1.69957
-1.58863
-1.47769
-1.36675
-1.2558
-1.14486
-1.03392
-0.922977
-0.812035
-0.701093
-0.590151
-0.479209
-0.368267
-0.257325
-0.146383
-0.0354407
0.0755013
0.186443
0.463798

Figure 2: Response plot for k = 2

IsoValue
-1.33669
-0.924052
-0.648963
-0.373873
-0.0987841
0.176305
0.451395
0.726484
1.00157
1.27666
1.55175
1.82684
2.10193
2.37702
2.65211
2.9272
3.20229
3.47738
3.75247
4.44019

Figure 3: Response plot for k = 3
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IsoValue
-6.21698
-5.49112
-5.00722
-4.52332
-4.03941
-3.55551
-3.0716
-2.5877
-2.1038
-1.61989
-1.13599
-0.652086
-0.168183
0.315721
0.799625
1.28353
1.76743
2.25134
2.73524
3.945

Figure 4: Response plot for k = 4

IsoValue
-5.66671
-4.79685
-4.21695
-3.63704
-3.05714
-2.47723
-1.89732
-1.31742
-0.737512
-0.157606
0.4223
1.00221
1.58211
2.16202
2.74192
3.32183
3.90173
4.48164
5.06155
6.51131

Figure 5: Response plot for k = 5
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IsoValue
-8.0087
-6.81318
-6.01617
-5.21915
-4.42214
-3.62512
-2.82811
-2.03109
-1.23408
-0.437064
0.35995
1.15696
1.95398
2.75099
3.54801
4.34502
5.14204
5.93905
6.73607
8.7286

Figure 6: Response plot for k = 6

IsoValue
-12.1588
-10.726
-9.7708
-8.81561
-7.86041
-6.90522
-5.95002
-4.99483
-4.03963
-3.08444
-2.12924
-1.17405
-0.218851
0.736344
1.69154
2.64673
3.60193
4.55713
5.51232
7.90031

Figure 7: Response plot for k = 7



On solving the Helmholtz equation in an ellipsoid 9

IsoValue
-10.4593
-8.51044
-7.21123
-5.91202
-4.61281
-3.3136
-2.01439
-0.715183
0.584026
1.88323
3.18244
4.48165
5.78086
7.08007
8.37928
9.67849
10.9777
12.2769
13.5761
16.8241

Figure 8: Response plot for k = 8

IsoValue
-14.3723
-12.4344
-11.1425
-9.85057
-8.55863
-7.26669
-5.97476
-4.68282
-3.39088
-2.09895
-0.807008
0.484929
1.77687
3.0688
4.36074
5.65268
6.94461
8.23655
9.52849
12.7583

Figure 9: Response plot for k = 9
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IsoValue
-14.8475
-12.1767
-10.3962
-8.61564
-6.83511
-5.05457
-3.27404
-1.4935
0.287034
2.06757
3.8481
5.62864
7.40917
9.18971
10.9702
12.7508
14.5313
16.3118
18.0924
22.5437

Figure 10: Response plot for k = 10

IsoValue
-60.2683
-51.8706
-46.2722
-40.6738
-35.0753
-29.4769
-23.8785
-18.28
-12.6816
-7.08317
-1.48473
4.1137
9.71214
15.3106
20.909
26.5074
32.1059
37.7043
43.3027
57.2988

Figure 11: Response plot for k = 11
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IsoValue
-435.674
-351.699
-295.715
-239.732
-183.749
-127.765
-71.782
-15.7987
40.1847
96.168
152.151
208.135
264.118
320.101
376.085
432.068
488.051
544.035
600.018
739.976

Figure 12: Response plot for k = 12

IsoValue
-102.396
-88.1925
-78.7235
-69.2544
-59.7854
-50.3163
-40.8472
-31.3782
-21.9091
-12.4401
-2.97104
6.49802
15.9671
25.4361
34.9052
44.3742
53.8433
63.3123
72.7814
96.454

Figure 13: Response plot for k = 13
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IsoValue
-41.3304
-37.1114
-34.2986
-31.4859
-28.6732
-25.8605
-23.0478
-20.2351
-17.4223
-14.6096
-11.7969
-8.98418
-6.17147
-3.35875
-0.54603
2.26669
5.07941
7.89212
10.7048
17.7366

Figure 14: Response plot for k = 14

IsoValue
-19.6531
-16.4786
-14.3622
-12.2459
-10.1296
-8.01323
-5.89688
-3.78054
-1.6642
0.452137
2.56848
4.68482
6.80116
8.9175
11.0338
13.1502
15.2665
17.3829
19.4992
24.7901

Figure 15: Response plot for k = 15
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IsoValue
-19.0175
-15.5769
-13.2832
-10.9894
-8.69567
-6.40192
-4.10817
-1.81442
0.479327
2.77308
5.06682
7.36057
9.65432
11.9481
14.2418
16.5356
18.8293
21.1231
23.4168
29.1512

Figure 16: Response plot for k = 14 for an oval other than ellipsoid

IsoValue
-16.0988
-13.4271
-11.6459
-9.86475
-8.08361
-6.30246
-4.52131
-2.74016
-0.959013
0.822135
2.60328
4.38443
6.16558
7.94673
9.72788
11.509
13.2902
15.0713
16.8525
21.3053

Figure 17: Response plot at k = 15 for an oval other than an ellipsoid
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IsoValue
-7.56525
-6.19667
-5.28429
-4.3719
-3.45951
-2.54713
-1.63474
-0.722358
0.190027
1.10241
2.0148
2.92718
3.83957
4.75195
5.66434
6.57673
7.48911
8.4015
9.31388
11.5948

Figure 18: Response plot at k = 10 for an ellipsoid with e = 0.7

5 Conclusion

The response to a spherical wave emitted from one focus of an ellipsoid of revolution,
for sufficiently large k, is a smooth function with a clearly defined extremum at the
second focus of the ellipsoid. This extremum is not a singularity of the solution
in the full sense of the word, but it can be assumed to represent a numerical
singularity. This means that certain series converge poorly in the vicinity of the
focus. We observed this phenomenon in the case of the Luneburg lens [6]. It is
worth noting that the finite element method copes well with this computational
singularity.
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