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Abstract. We have studied the evolution of space-time with nonlinear spinor field
in the framework of Lyra’s geometry. The role of a nonlinear spinor field in the
evolution of Universe was identified. Earlier we have considered the nonlinear
spinor field in isotropic and anisotropic cosmological models and found that the
presence of nontrivial non-diagonal terms in energy-momentum tensor imposes
different type of restrictions both on space-time geometry and spinor field itself.
The introduction of Lyra’s geometry leads to the complex dependence of invariants
of bilinear spinor forms.
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.1 Introduction

The Standard Model of Cosmology (SMC), also known as the Λ-CDM model (Λ-
Cold Dark Matter), rests on three fundamental assumptions:

(a) the validity of General Relativity on cosmological scales;

(b) the correctness of the Standard Model of particle physics at small (quantum)
scales; and

(c) the cosmological principle, which posits that the Universe is spatially homoge-
neous, isotropic, and infinite on large scales.

According to this model, the Universe originated from a Big Bang, emerging from
a state of pure energy. The present-day energy composition of the Universe is
estimated to be approximately 5\% ordinary (baryonic) matter, 27\% dark matter,
and 68\% dark energy.

Despite its simplicity, the Λ-CDM model successfully explains a wide range of
cosmological observations, including Type Ia supernovae, cosmic microwave back-
ground radiation (CMBR) anisotropies, large-scale structure formation, gravitatio-
nal lensing, and baryon acoustic oscillations. However, it faces theoretical challen-
ges, notably severe fine-tuning problems related to the vacuum energy (cosmological
constant) scale. These shortcomings motivate the exploration of alternative cosmo-
logical models. In such alternatives, researchers often seek to modify Einstein’s field
equations by introducing additional terms in the gravitational Lagrangian beyond
the Ricci scalar or by considering non-Riemannian geometries. Some approaches
also involve exotic matter or field sources.

Shortly after Einstein proposed his famous theory of gravity, Weyl in an at-
tempt to unify gravitation and electromagnetic field, introduced a generalization of
Riemannian Geometry [1]. Weyl theory was not taken seriously as it contradicted
some well-known observational result. In 1951 Lyra proposed a modification of
Riemannian geometry which bears a close resemblance of Weyl geometry [2]. But
unlike Weyl geometry, in Lyra’s geometry the connection is metric preserving as in
Riemannian geometry. In doing so he introduced a gauge function into the struc-
tureless manifold. This theory was further developed by Sen [3], Halford [4], Sen
and Dunn [5], Sen and Vanstone [6] and many others. Recently Lyra’s geometry is
being used extensively in cosmology [7, 8, 9, 10, 11].

In a number of papers [12, 13, 14] it was shown that spinor field is very sen-
sitive to the gravitational one. In most cases there exist nontrivial non-diagonal
components of energy-momentum tensor (EMT) which leads to the different types
of restrictions both on the geometry of space-time and the spinor field itself. The
aim for considering Lyra’s geometry is to clarify whether it can remove or weaken
the restrictions those occur in usual cases.
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.2 Basic equations

2.1 Riemann geometry

An affine connection is characterized by its components Γµαβ which are defined by
the change due to infinitesimal parallel transform of a vector ξµ from a point P (Xµ)
to a point P (xµ + dxµ):

δξµ = −Γµαβξ
αdxβ, (1)

and the fundamental metric tensor gµν that is defined the measure of length ξ of a
vector ξµ:

ξ2 = ξµξ
µ = gµνξ

µξν . (2)

From the foregoing identity we obtain

2ξδξ = gµν,αξ
µξνdxα + gµνδξ

µξν + gµνξ
µδξν , (3)

where gµν,α = ∂gµν/∂x
α. Inserting (1) into (3) after some manipulation we find

2ξδξ = gµν;αξ
µξνdxα, (4)

where

gµν;α = gµν,α − Γβµα gβν − Γβνα gµβ (5)

is the covariant derivative of metric function. In Riemann geometry Γαµν = Γανµ and
under parallel transform the length does not change. This leads to the metricity
condition

gµν;α = 0. (6)

Note that from (6) one finds the connection Γαµν which we further denote as {αµν},
is symmetric in two lower indices and known as Levi-Civita connection. Summation
of (6) and its cyclic cunterparts

gµν;α + gνα;µ + gαµ;ν = 0 (7)

yields

{αµν} =
1

2
gαβ (gµβ,ν + gβν,µ − gµν,β) . (8)
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2.2 Weyl’s geometry:

In electrodynamics it was found that Maxwell’s equations are invariant to a certain
change in electromagnetic 4-potential Ãµ = Aµ + ∂µf with f being a scalar. Under
this the electromagnetic field Fµν = ∂µAν − ∂νAµ remains unchanged. It is known
as gauuge in electrodynamics. In 1918 Weyl proposed a new kind of gauge theory
involving metric tensor gµν . According to his assumption there exist a geodesic
gauge in which lenth of a vector does not change under parallel transform, but in
an arbitray gauge it is assumed to change. Thus in analogy with (2) he proposed

dξ = −ξφµdxµ, (9)

where φµ is a vector function characterizing the manifold. Thus the metrical con-
nection of a Weyl manifold is characterized by two independent quantities gµν and
φµ. In this case length is no longer remains unchanged. In fact inserting (9) into
(3) we find

−2φαgµν = gµν,α − Γβµα gβν − Γβνα gµβ, (10a)

−2φµgνα = gνα,µ − Γβνµ gβα − Γβαµ gβν , (10b)

−2φνgαµ = gαµ,ν − Γβαν gβµ − Γβµν gβα, (10c)

from which after a little manipulation we find

Γ̄αµν = {αµν}+
1

2

(
δαµφν + δαν φµ − gµνφα

)
, φµ = gµνφν . (11)

If one makes a gauge transformation ξ → ξ̄ = λξ, λ = λ(x), then

gµν → ḡµν = λ2gµν , φµ = φµ − 2λµ/λ, λµ = ∂λ/∂xµ (12)

leaves (11) unaltered.

2.3 Lyra’s geometry:

Lyra suggested a modification of Riemannian geometry which is also a modification
of Weyl geometry. The metrical concept of gauge in Weyl geometry was modified by
a structureless gauge function. The displacement vector between two neighbouring
points now has the components ξµ = x0dxµ where x0 and is a nonzero gauge
function. The transformation to new reference system is given by

xµ = xµ(xλ
′
), x0 = x0(xµ

′
, x0

′
), (13)
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where ∂x0/∂x0
′

and Det ∂xµ/∂xν
′ 6= 0. Under this transformation components of a

contravariant vector are transformed according to

ξµ = λ−1
∂xµ

∂xν′
ξν

′
, λ =

x0
′

x0
. (14)

From the definition of affine connecxion we know that there exists for everypoint
P in a local reference system (x0

′
, xµ

′
) in the immediate neighbourhood, known

as geodesic at P , such that it is δξµ
′

= 0. Then in any general reference system
(x0, xµ) we have

δξµ =

(
1

x0
∂2xµ

∂xβ′∂xη′
∂xβ

′

∂xα
∂xν

′

∂xη
− 1

2
δµηφα

)
ξηx0dxα, φα =

1

x0
∂ lnλ2

∂xα
. (15)

Therefore, in any general reference system (x0, xα) the parallel transfer of a vector
from P = (xµ) to P ′ = (xµ + dxµ) can be written as

δξµ = −Γ̃µαβξ
αx0dxβ = −

(
Γµαβ −

1

2
δµαφβ

)
ξαx0dxβ. (16)

The interval in Lyra’s geometry is given by

ds2 = gµνx
0dxµx0dxν . (17)

The parallel transport of length in Lyra geometry is integrabble, i.e.,

δ(gµνξ
µξν) =

1

x0
∂αgµνξ

µξνx0dxα + gµνδξ
µξν + gµνξ

µδξν = 0. (18)

Inserting (15) into (18) we obtain

Γαµν =
1

x0
{αµν}+

1

2

(
δαµφν + δαν φµ − gµνφα

)
, (19)

which is similar to the connection (11) of Weyl geometry. Here {αµν} is the Levi-

Civita connection. It should be noted that Γµαβ = Γµβα, though Γ̃µαβ 6= Γ̃µβα. Moreover,
Γµαβ in Weyl’s and Lyra’s geometries differs from each other by the factor 1/x0. In

Lyra’s geometry we should substitute Γρµν with Γ̃ρµν . On account of (19) we can now

rewrite Γ̃ρµν as

Γ̃µαβ =
1

x0
{µαβ}+

1

2

(
δµβφα − gαβφ

µ
)
. (20)

The parallel transfer, hence the equation of motion

1

x0
∂ξα

∂β
+ Γ̃ανβξ

ν = 0 (21)
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is integrable if the components of the tensor

Kλ
µαβ =

1

(x0)2

[∂(x0Γ̃λµβ)

∂xα
−
∂(x0Γ̃λµα)

∂xβ
+ x0Γ̃λραx

0Γ̃ρµβ − x
0Γ̃λρβx

0Γ̃ρµα

]
(22)

vanish. As one sees, it is the analog Riemann tensor in Lyra’s geometry and can
be expressed

Kλ
µαβ = ?Rλ

µαβ +
1

2
δλµΦαβ (23)

with

?Rλ
µαβ =

1

x0

[
∂Γλµβ
∂xα

−
∂Γλµα
∂xβ

]
+ ΓλραΓρµβ − ΓλρβΓρµα +

1

2

(
φ̊αΓλµβ − φ̊βΓλµα

)
, (24)

Φαβ =
1

x0

[
∂φα
∂xβ
− ∂φβ
∂xα

]
+

1

2

(
φ̊αφβ − φ̊βφα

)
. (25)

As was shown by Sen in a normal gauge with x0 = 1 Einstein’s feild equations in
Lyra’s geometry take the form

Gν
µ +

3

2
φµφ

ν − 3

4
δνµφαφ

α = κT νµ , (26)

where φµ is the displacement vector. Here

Gν
µ = Rν

µ −
1

2
δνµR. (27)

Let us consider φµ as a time-like vector field of displacement.

2.4 Spinor field

Given the role that spinor field can play in the evolution of the Universe, question
that naturally pops up is, if the spinor field can redraw the picture of evolution
caused by perfect fluid and dark energy, is it possible to simulate perfect fluid and
dark energy by means of a spinor field? Affirmative answer to this question was
given in the a number of papers. We consider the spinor field Lagrangian given by
[12]

Lsp =
ı

2

[
ψ̄γµ∇µψ −∇µψ̄γ

µψ

]
−mspψ̄ψ − F, (28)

where the nonlinear term F describes the self-interaction of a spinor field and can be
presented as some arbitrary functions of invariants K that take one of the following
values {I, J, I + J, I − J} generated from the real bilinear forms of a spinor field.
We also consider the case ψ = ψ(t), so that I = S2 = (ψ̄ψ)2, & J = P 2 = (ıψ̄γ5ψ)2.
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The spinor field equations take the form

ıγµ∇µψ −mspψ −Dψ − ıGγ5ψ = 0, (29)

ı∇µψ̄γ
µ +mspψ̄ +Dψ̄ + ıGψ̄γ5 = 0, (30)

where we denote D = 2SFKKI and G = 2PFKKJ with FK = dF/dK, KI = dK/dI
and KJ = dK/dJ . In the Lagrangian (28) and spinor field equations (29) and (30),
∇µ is the covariant covariant derivative of the spinor field, so that ∇µψ = ∂µ−Ωµψ
and ∇µψ̄ = ∂ψ̄ + ψ̄Ωµ, where

Ωµ =
1

4
γ̄aγ

ν∂µe
(a)
ν −

1

4
γργ

νΓρµν . (31)

As far as Lyra geometry is concerned, in (31) we should replace Γρµν by Γ̃ρµν .
Taking into account that in Lyra’s geometry ∂/∂µ is replaced by ∂/(x0∂µ). In view
of (20) we rewrite Γ̃ρµν as

Γ̃ρµν =
1

x0
{ρµν}+

1

2
(δρνφµ − gµνφρ) . (32)

Inserting it into (31) one finds the spinor affine connection

Ω̃µ =
1

x0

[
1

4
γ̄aγ

ν∂µe
(a)
ν −

1

4
γργ

ν{ρµν}
]
− 1

8
(γνγ

νφµ + γµγ
νφν)

=
1

x0
Ω̊µ + Ω̄µ. (33)

The energy momentum tensor of the spinor field is given by

T ρ
µ =

ıgρν

4

(
ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ

)
− δρµLsp

=
ı

4
gρν
(
ψ̄γµ∂νψ + ψ̄γν∂µψ − ∂µψ̄γνψ − ∂νψ̄γµψ

)
− ı

4
gρνψ̄

(
γµΩ̃ν + Ω̃νγµ + γνΩ̃µ + Ω̃µγν

)
ψ

− δρµ
(
2KFK − F (K)

)
. (34)

On account of spinor field equations (29) and (30) the spinor field Lagrangian
takes the form Lsp = 2KFK−F (K). The term in red is responsible for non-diagonal
components. Thanks to spinor field equations the conservation of energy holds, i.e.,

T µν;µ = 0. (35)

Then taking into account that the in case of spinor field T νµ;ν = 0 on accout on
Bianchi identity Gν

µ;ν = 0 from (26) we find
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(
3

2
φµφ

ν − 3

4
δνµφαφ

α

)
;ν

= 0. (36)

Following Sen we consider the gauge function as follows:

φµ = {β(t), 0, 0, 0}. (37)

For Bianchi metrics in this case we find the additional part of spinor affine con-
nection Ω̄µ ∝ β. Unlike Riemann geometry in this case the invariants of spinor field
possess following form

K =
C2

0

V 2
exp

[
−3β0

2

∫
dt

V (t)

]
. (38)

with V being the volume scale of space-time. Now one has to give concrete form
of space-time to find the solution to the corresponding Einstein and spinor field
equations.

.3 Conclusion

Within the scope of gravitational cosmological models with Lyra’s geometry we have
studied the role of nonlinear spinor field in the evolution of universe. Earlier studies
showed that the presence of nontrivial non-diagonal terms in energy-momentum
tensor imposes different type of restrictions both on space-time geometry and spinor
field itself. The introduction of Lyra’s geometry leads to the complex dependence
of invariants of bilinear spinor forms. In this report we give some general ideas
about spinor field with Lyra’s geometry. We plan to consider some specific cases in
future.

.References

[1] H. Weyl, Gravitation and Electricity, Preuss. Akad. Wiss. Berlin, 465 (1918)

[2] G. Lyra, Math. Z. 54, 52 (1951)

[3] D. K. Sen, Z. Physik. 149, 311 (1957)

[4] Halford J. Math. Phys. 13, 1699 (1972)

[5] D.K. Sen and K.A. Dunn, J. Math. Phys. 12, 578 (1971)

[6] D.K. Sen and J.R. Vanstone, J. Math. Phys. 13, 990 (1972)



Spinor Field in Cosmology 9

[7] A. Beesham, Aust. J. Phys. 41, 833 (1988)

[8] A.S. Jahromi and H. Moradpour, Int. J. Mod. Phys. D 27 1850024 (2018)

[9] M.A. Bakry, Astrophys. Space Sci. 367, 35 (2022)

[10] V.K. Shchigolev and D.N. Bezbatko, Grav. & Cosmology, 24(2), 161 (2018)

[11] R. Casana, C. A. M. de Melo, B. M. Pimentel, Astrophys. Space Sci. 305,
125 (2006)

[12] B. Saha, Phys. Rev. D 64, 123501 (2001)

[13] B. Saha, Eur. Phys. J. Plus 131 170 (2016)

[14] B. Saha, Phys. Part. Nucl. 49(2), 146 (2018)


	Introduction
	Basic equations
	Riemann geometry 
	Weyl's geometry:
	 Lyra's geometry:
	 Spinor field

	Conclusion

