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Abstract. In this note, we consider a multiqubit quantum system with a Hamil-
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efficiently simulated on a classical computer.
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1 Introduction

The problem of simulating the time evolution of a quantum systems was at the
core of the idea that has led to the emergence of the theory of quantum compu-
ting [1, 2, 3, 4]. Any realization of a computational process based on the principles
of quantum mechanics involves the use of a certain model and an appropriate phy-
sical device. Typically, a real quantum system is modeled by another quantum
system, which is usually artificial and simpler, since it consists of qubits, and its
evolution is governed by a simple Hamiltonian. Simulation is a satisfactory im-
plementation of computations for a given model on a quantum or classical device
in order to correctly reproduce the main features of the modeled real system. For
example, the Hamiltonian of a system of qubits and then the corresponding unitary
transformation can be implemented at the hardware level by a suitable quantum
circuit.

In this note, we will always be dealing with a quantum system of n pairwise
distinguishable qubits, which is mathematically described by means of the Hilbert
space Hn = H⊗n, where H is the Hilbert space of a qubit and thus dimCH = 2. Let
L(Hn) = Hn⊗H†n be the associative algebra of linear operators onH andH†, which
act on ket and bra state vectors by the left and right contractions, respectively. The
dimensions of Hn and L(Hn) are

dimCHn = dimCH†n = N, dimCL(Hn) = N2, N = 2n.

In fact, only two classes of operators are needed in quantum computing (this is gene-
rally not true in quantum theory), namely, the (real) linear space H(Hn) ⊂ L(Hn)
of Hermitian operators and the unitary groups SU(N) ⊂ U(N) ⊂ L(Hn); H(Hn) is
not a real subalgebra in L(Hn), but is a Jordan algebra under the anticommutation
operation. In general, a state of an n-qubit quantum system is mathematically
described by a density operator ρ ∈ H(Hn), which is positive (has no negative ei-
genvalues) and has unit trace. In quantum theory, observables are also Hermitian
operators, while unitary operators determine the evolution of a system.

Nowadays, it is believed that a universal quantum computer [5, 6] demonstrating
quantum supremacy should have a large number of qubits, say n ≥ 100. Thus the
number of basis states is N = 2n > 1030 in Hn and N2 = 4n > 1060 in L(Hn), so
that the matrix representation of states and operators is not practically acceptable.
Both universal quantum computers and quantum computers with small number of
qubits (n ∼ 100) that will be available in the near term have be employed together
with a classical computer, and, in both cases, multiqubit quantum computations
are very sensitive to the choice of a computational basis [7, 8, 9]. We will use the
Pauli basis in L(Hn).

Our aim is to consider in detail the following two issues: (i) preliminary simu-
lation of a multiqubit quantum system on a classical computer for some special
but important case when the Hamiltonian of the system can be decomposed into a
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few parts in such a way that each of these part consists of pairwise anticommuting
Pauli operators; (ii) a quantum computational advantage (using the Trotter-Suzuki
algorithm as an example) that can be achieved by such a decomposition. We will
understand the term ”simulating” in a wide sense assuming that for a real quan-
tum many-body system modeled by a multiqubit quantum system, the simulation
process replicates (approximately, but with good accuracy) its eigenstates, time
evolution, and thermodynamics properties. Then in both cases of quantum and
classical simulation, the problem consists of computing the exponentials of linear
operators in finite-dimensional spaces.

In Sec. 2, we briefly consider some general aspects of setting the problem of
Hamiltonian simulation. Sec. 3 is devoted to the discussion of the related properties
of the Pauli basis. In Sec. 4, we discuss the notion of sparse Hamiltonian in the Pauli
basis. In Sec. 5, we give two model examples of anticommutatively decomposed
Hamiltonians. Throughout the text we use the system of units with ~ = c = kB = 1,
where kB is the Boltzmann constant.

2 Statement of the Hamiltonian simulation problem

The general formulation of the problem can be represented as an efficient computa-
tion of exponentials of the form e−βĤ , where Ĥ is an arbitrary Hermitian operator
which is further regarded as a Hamiltonian. A weaker statement of the problem
requires only an approximation with the desired accuracy. There are two special
cases of interest in quantum theory. If β = it or, in a more general context when the
Hamiltonian Ĥ is time-dependent and β = i, the exponential e−itĤ or, respectively,
e−iĤ(t) describes the unitary dynamics of the corresponding quantum system. In
another case, β denotes the inverse temperature of a ”large” isolated quantum sy-
stem that has a fixed energy and number of particles — such system is commonly
referred to as the environment, — and Ĥ denotes the Hamiltonian of a ”small”
subsystem weakly coupled to the environment. We will also assume, for simplicity,
that the number of particles in the subsystem is fixed, but at the same time the
subsystem can exchange some portions of energy with the environment. Then, if
the environment has reached its thermal equilibrium, the subsystem is described
by the Gibbs state

ρ̂ =
e−βĤ

Z
, Z = tr e−βĤ .

Functions of operators arise naturally as formal solutions to a number of pro-
blems in physics and applied mathematics and have been widely studied earlier in
the equivalent formulation of functions of matrices [10, 11]. The operator formu-
lation is commonly used in simulating quantum Hamiltonian dynamics, quantum
machine learning, quantum computing. A preliminary classical calculation of the
Hamiltonian exponential is useful both for testing quantum algorithms and for the
inverse problem of choosing the model Hamiltonians itself [12]; however, the com-
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putational complexity is exponential in the number of qubits. Moreover, we have no
universal algorithm that would be computationally efficient for all types of Hamilto-
nians at once. We have Trotter-Suzuki decomposition [13], Magnus expansion [14],
and — see review [10] — Padé approximation, Jordan-Schur decomposition (not
suitable for time-dependent Hamiltonians) For bounded linear operators in a nor-
med vector space, the exponential of an operator can be defined by the Taylor
expansion,

e−βĤ =
∞∑
k=0

(−1)k
βk

k!
Ĥn (Ĥ0 = Î ), (1)

and can be computed approximately using truncated Taylor series [15]. In this
paper, our attention is restricted to finite dimensional Hilbert spaces, and even
more specifically, to quantum systems consisting of a finite number of qubits. If
Ĥ ∈ L(Hn), then this series converges absolutely for any β ∈ C (and converges
uniformly for β taking values in a bounded domain) with respect to the Frobenius
norm. The expansion (1) provides us with the simplest algorithm for computing
operator exponentials using truncated Taylor series, but it should be kept in mind
that the results will, in general, not be unitary. An exception is the case when
the series can be summed exactly to obtain the result in the form of an explicit
closed-form expression.

3 Properties of the Pauli basis

First of all, we need to introduce in detail some special properties of the n-qubit
Pauli basis. The choice of a basis in L(Hn) is equally important for both quantum
computing and its emulation on a classical computer. There are two general possi-
bilities for choosing a basis, and which one is more efficient depends on both a given
algorithm and a particular type of quantum computer. First, we can use a standard
orthonormal basis in the based Hilbert space and then construct a suitable basis
in the algebra of linear operators. However, this approach turns out to be inconve-
nient and unnatural in the consideration of problems related to mixed states, graph
states, tensor networks, and more generally, to all cases where measurements are
not projective [6, 17, 18]. The second possibility deals directly with a basis in the
operator algebra, and in this case the basis elements usually cannot be separated
into a tensor product of some ket and bra vectors; the Pauli basis is considered to
be the best choice. A systematic algebraic overview of the Pauli basis in multiqubit
systems is given, for example, in [19, 20].

We assume that L(Hn) is equipped with the Hilbert-Schmidt inner product and
the corresponding Frobenius norm:

〈Â, B̂〉 = tr(Â†B̂), ‖ Â‖= 〈Â, Â〉1/2, Â, B̂ ∈ L(Hn).

The set of the Pauli operators {σ̂k}3k=0 (the identity operator σ̂0 is included) is
usually chosen as an Hermitian orthogonal basis in the one-qubit algebra L(H). In
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the operator (non-matrix) representation, σ̂k can be written as the expansion on
the standard basis in the form

σ̂0 = |0〉〈0|+ |1〉〈1|, σ̂1 = |0〉〈1|+ |1〉〈0|,

σ̂2 = −i|0〉〈1|+ i|1〉〈0|, σ̂3 = |0〉〈0| − |1〉〈1|,
Let us consider the set K4 = {0, 1, 2, 3} as the Klein group with the multiplication
rules

0∗k = k, k∗k = 0, k∗l = m, k, l,m ∈ {1, 2, 3},
where m is defined by the condition that klm is a permutation of 123. Defining the
function s : K4 ×K4 → {1, i,−i} as

s(0, 0) = s(0, k) = s(k, 0) = s(k, k) = 1,

s(k, l) = επi, k, l ∈ {1, 2, 3}, (2)

where επ is the sign of the permutation π(123) = klm, m = k∗l, we can write the
well-known expressions for composition of these operators as

σ̂kσ̂l = s(k, l)σ̂m, m = k∗l, k, l ∈ {0, 1, 2, 3}.

As stated above, qubits in a quantum system are distinguishable and therefore
can be numbered from 1 to n. We will consider the qubit system to be ordered and
hence do not use a qubit position index; mathematically, the location in the tensor
product distinguishes qubits from each other. In other words, we assume in what
follows that their numbers correspond to the ordinal numbers of the one-qubit Pauli
operators in their tensor product, so that no additional labels for the operators are
required. Thus, the lowercase indices in Pauli strings will always denote the Pauli
operator number from the set {0, 1, 2, 3}. Keeping this in mind, we can introduce
the set of N2 pairwise orthogonal operators (also commonly called Pauli operators
or, alternatively, Pauli strings),{

σ̂k1...kn
}
k1,...,kn ∈{0,1,2,3}

, σ̂k1...kn = σ̂k1⊗ . . .⊗ σ̂kn ∈ L(Hn), (3)

which, in turn, is the Pauli basis in L(Hn).

It is easy to prove [16, 17] that there exists a unitary transformation from the
Pauli basis, to the corresponding computational basis {|u〉〈v|}, where |u〉 and |v〉
are binary strings of length n. We will also use the notation σ̂K for the operator
σ̂k1...kn , where K is the decimal representation of the Pauli string k1 . . . kn which is
considered as a number in base 4. Note, in particular, that σ̂0 = σ̂0...0 is the identity
operator in L(Hn).

Recall, first, that the Pauli operators σ̂K are Hermitian and unitary at the same
time, and satisfy the relations

tr σ̂0 = N, tr σ̂K
∣∣
K 6=0

= 0, σ̂2
K = σ̂0, 0 ≤ K ≤ N2 − 1, ‖ σ̂K ‖=

√
N. (4)
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Second, we need an explicit formula for the composition of n-qubit Pauli operators,
since it is an important part of the complete algorithm. Third, let σ̂K and σ̂L be
Pauli operators. Using (2) – (3), one finds for K = k1 . . . kn and L = l1 . . . ln the key
expressions

σ̂K σ̂L = S(K,L)σ̂M , M = K∗L = m1 . . .mn, 0 ≤ K,L ≤ N2 − 1, (5)

where
S(K,L) = s(k1, l1)s(k2, l2) · · · s(kn, ln), (6)

and the operation ∗ is extended to the Pauli strings in such a way that mα = kα∗lα
for all α = 1, . . . , n. This algorithmic rule can be interpreted more intuitively as
follows.

Proposition 1. Let us consider the set of pairs (kα, lα) such that kα, lα ∈ {1, 2, 3} and

kα 6= lα. Let ne and no be the numbers of such pairs for which the triple kαlαmα,

where mα = kα∗lα, is an even and, respectively, an odd permutation of the string

123. Then σ̂K and σ̂L commute if ne and no have the same parity, and anticommute

otherwise.

The proof follows directly from (2) and (6). We have

S(K,L) = ine(−i)no = ine+no(−1)no , (7)

so that S(K,L) = S(L,K) if and only if ne and no are both either even or odd; in this
case, σ̂K and σ̂L commute. Otherwise, S(K,L) = −S(L,K) and these operators
anticommute.

Finally recall that the set {
iσ̂K | 0 ≤ K ≤ N2−1

}
of the anti-Hermitian operators is a basis in the real Lie algebra u(N) of the uni-
tary group U(N), and is a basis in the algebra su(N) of the group SU(N) if K
is restricted to the set {1, . . . , N2−1}. Indeed, relations (5) and (7) imply that
[iσ̂K , iσ̂L] = CKLiσ̂M , where the structure constants CKL = iS(K,L) − iS(L,K)
are real.

4 Sparse quantum states and Hamiltonians

The Pauli basis is particularly useful for representing density operators and Hamil-
tonians. A quantum state (a density operator) is a Hermitian positive operator of
the form

ρ̂ =
1

2n

∑
k1,...,kn ∈{0,1,2,3}

ak1...knσ̂k1...kn ≡
1

2n

4n−1∑
K=0

aK σ̂K , (8)
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where ak1...kn ∈ R and

a0...0 = 1 , |ak1...kn| 6 1,
∑

k1,...,kn ∈{0,1,2,3}

(ak1...kn)2 6 2n. (9)

Conditions (9) guarantee that ρ̂† = ρ̂, tr ρ̂ = 1, and tr ρ̂2 6 1. For quantum
computation, it is important that all coefficients in the state (8) are real and each
of them, except a0...0, is exactly the result of a local measurement with one of the
basis operators (3), aK ≡ ak1...kn = tr

(
ρ̂σ̂k1...kn

)
. All the quantum (pure and mixed)

states constitute a convex set (closed manifold, since it is the preimage of 1 under
the map tr : H(Hn) → R) of real dimension 4n − 1 in the real linear manifold
Sn ⊂ H(Hn), while the pure states are placed on the boundary of Sn and make up
a real submanifold of dimension 2n+1 − 2.

Next we consider the representation of a Hamiltonian Ĥ ∈ L(Hn) in the form

Ĥ =
∑
K∈T

hK σ̂K , hK ∈ R, T ⊂{1, 2, . . . , N2 − 1}, (10)

where we assume, without loss of generality, that the Hamiltonian is traceless, that
is, σ̂0 is not included in this expansion.

A Hamiltonian represented in the form of the expansion (10) will be said to
be sparse in the Pauli basis if the following two conditions are fulfilled. First, the
condition |T | � N2 is satisfied, and second, the set σĤ =

{
σ̂K |K ∈ T

}
in (10) is

closed under composition.

The first condition should be understood only as the necessity to relate the
length of expansion (10) to the available computational resources. The second
condition is also not too restrictive in practice, since the set σĤ can usually be
extended to be closed (by successively adding to this set all operators of the form
σ̂M = σ̂K σ̂L/S(K,L)

∣∣
K,L∈T that are not contained in it) while maintaining the first

condition. On the other hand, there exist Hamiltonians that cannot be extended in
this way to short ones. For example, the Hamiltonian of the quantum Heisenberg
XY model is obviously not short, since we will get |T | = N2 as a result of this
procedure. Note that the property of being sparse can be applied not only to
Hamiltonians, but also to density operators and unitary operators. For example, the
expansion for the density operator of the so-called uniform quantum superposition,

ρ̂s =
1

N

N−1∑
k,l=0

|k〉〈l| = 1

N

∑
K∈{0,1}n

σ̂K ,

has N2 terms in the standard (computational) basis, and only N terms in the
corresponding Pauli basis; hence, in certain cases, the density operator ρ̂s can be
considered as a sparse operator.

Below it is assumed that all Hamiltonians under consideration are sparse.
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5 Anticommutatively decomposed Hamiltonians

This section is based on the following

Proposition 2. If all the operators σ̂K in the Pauli expansion (10),

Ĥ =
∑
K∈T

hK σ̂K ,

anticommute pairwise, {σ̂K , σ̂L} = 2δK,Lσ̂0, then

e−βĤ = cosh(hβ) σ̂0 −
sinh(hβ)

h
Ĥ, h =

(∑
K∈T

h2K

)1/2

. (11)

The coefficients hK can be time-depended.

To prove this proposition, it is sufficient to note that

Ĥ2 = h2σ̂0, Ĥ2k = h2kσ̂0, Ĥ2k+1 = h2kĤ, k ∈ N,

and then substitute these equalities in the Taylor series (1).

For example, let us consider the model Hamiltonian1

Ĥ = a1σ̂123 + a2σ̂231 + a3σ̂312, (12)

in which {σ̂123, σ̂231}= {σ̂312, σ̂231}= {σ̂123, σ̂312}= 0, and ak (k = 1, 2, 3) are real.
According to the general formula (11), we have

e−βĤ = cosh(pβ) σ̂000 −
sinh(pβ)

p
Ĥ, p =

√
a21 + a22 + a23. (13)

Then the dynamics of this three-qubit system, assumed to be closed, is determined
by the unitary operator

e−itĤ = cos(pt) σ̂000 − i
sin(pt)

p
Ĥ.

In a more general case, the Hamiltonian of a multiqubit system is assumed to
be decomposed into the sum (such a Hamiltonian is said to be anticommutatively
decomposed)

Ĥ = Ĥ1 + Ĥ2 + . . .+ Ĥm, Ĥk =
∑
K∈Tk

hK σ̂K , k = 1, 2, . . . ,m,

where each set {σ̂K}K∈Tk consists of pairwise anticommuting Pauli operators, and,
in accordance with expression (10),

T1 ∪ T2 ∪ . . . ∪ Tm = T , Ti ∩ Tj
∣∣
i 6=j = ∅, i, j = 1, 2, . . . ,m.

1In the system of units with ~ = c = kB = 1, energy (coefficients a, b, c in the present case) is

measured in inverse units of length, and t and β are measured in units of length. Everywhere we

suppose that the unit of length is fixed in some convenient way.
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For simplicity, we consider the sum with m = 2, that is, Ĥ = Ĥ1 + Ĥ2, but
generalization to the case m > 2 is obvious. It turns out that the anticommutative
decomposition of a Hamiltonian allows one to optimise the approximate methods
listed in 2. This assertion can be explicitly illustrated on the example of the well-
known Trotter-Suzuki algorithm [13]. For example, the Lie-Trotter symmetrized
formula takes the form

e−itĤ = lim
s→∞

(
Û12(s, t)

)s
, (14)

where

Û12(s, t) =
1

2

(
e−(it/s)Ĥ1e−(it/s)Ĥ2 + e−(it/s)Ĥ2e−(it/s)Ĥ1

)
= cos

pt

s
cos

qt

s
σ̂0 −

1

2pq
sin

pt

s
sin

qt

s
{Ĥ1, Ĥ2}

− i

p
sin

pt

s
cos

qt

s
Ĥ1 −

i

q
sin

qt

s
cos

pt

s
Ĥ2, (15)

and (n is the number of qubits)

p =
(

2−n trĤ2
1

)1/2
, q =

(
2−n trĤ2

2

)1/2
.

The unitary operator Û12 can be easily implemented using a quantum circuit, and
its multiple repetition yields the exponential e−βĤ with a good accuracy. We have
restricted our consideration to the simplest first-order formula, but the generaliza-
tion of the algorithm to the second order,

e−βĤ =
(

e−(β/2s)Ĥ1e−(β/s)Ĥ2e−(β/2s)Ĥ1

)s
+O(β3/s2),

as well as to higher orders, can be done directly.

In the next example, we take the Hamiltonian (11) as Ĥ1 and set for Ĥ2 the
operator

Ĥ2 = b1σ̂301 + b2σ̂013 + b3σ̂130, q =
√
b21 + b22 + b23,

where all Pauli operators anticommute, and bk (k=1, 2, 3) are real. It is convenient
to introduce the notations

α =
1

p
(a1 a2 a3), β =

1

q
(b1 b2 b3), Â =

(
σ̂123 σ̂231 σ̂312

)
, B̂ =

(
σ̂301 σ̂013 σ̂130

)
.

Denoting by a dot the formal inner product (as in R3), we have

Ĥ1 = pα·Â, Ĥ2 = qβ ·B̂, (16)

(α·Â)2 = (β ·B̂)2 = (β ·Â)2 = (α·B̂)2 = σ̂000. (17)
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It is also easy to find that

{α·Â,β ·B̂} = 2(α·β) σ̂222, {α·B̂,β ·Â} = 2(α·β) σ̂222, (18)

{σ̂222,α·Â} = α·B̂, {σ̂222,β ·B̂} = β ·Â, (19)

{σ̂222,α·B̂} = α·Â, {σ̂222,β ·Â} = β ·B̂. (20)

The operator Û12 takes the form

Û12 = cos
pt

s
cos

qt

s
σ̂000 − sin

pt

s
sin

qt

s
(α·β) σ̂222

− i sin
pt

s
cos

qt

s
α·Â− i sin

qt

s
cos

pt

s
β ·B̂.

Using the expressions (16) – (20), one can obtain a (cumbersome) recurrence formula
for even powers of this operator.

In the simple case when α·β = ±1, it is easy to find a closed expression for
an arbitrary power of Û12. By direct calculation, regardless of the sign of α·β, we
obtain

Ûk
12 = cos

kpt

s
cos

kqt

s
σ̂000 − sin

kpt

s
sin

kqt

s
(α·β) σ̂222

− i sin
kpt

s
cos

kqt

s
α·Â− i sin

kqt

s
cos

kpt

s
β ·B̂.

Thus, Û s
12 = Û12 for k = s. In the limit s→∞, we get (for α·β = ±1)

e−it(Ĥ1+Ĥ2) = cos pt cos qt σ̂000 − sin pt sin qt (α·β) σ̂222

− i sin pt cos qtα·Â− i sin qt cos ptβ ·B̂.

This result, which is a very special case of the general formulae (14) and (15),
could be obtained by direct summation of the Taylor series (1) with β = it and
Ĥ = Ĥ1 + Ĥ2. Indeed, Ĥ1Ĥ2 = pq(α·β)− ipq(α×β) = pq(α·β) if α is proportional
to β, and consequently

[
Ĥ1, Ĥ2

]
= 0.

Finally, we consider the case when the system is in the state of thermal equili-
brium with the environment. Setting, for definiteness, α ·β = 1 and returning to
the previous notations, we obtain the partition function and the density operator
in the form

Z = tre−β(Ĥ1+Ĥ2) = 8 cosh pβ cosh qβ

ρ =
e−β(Ĥ1+Ĥ2)

Z
=

1

8
σ̂000 + tanh pβ tanh qβ σ̂222

− 1

p
tanh pβ Ĥ1 −

1

q
tanh qβ Ĥ2.
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The partition function determines the mean value of the energy and the entropy of
the system as follows:

〈E〉 = tr{ρ(Ĥ1 + Ĥ2)} = −∂β lnZ = −p tanh pβ − q tanh qβ,

S = lnZ + β〈E〉 =

ln 2 + ln(epβ + e−pβ) + ln(eqβ + e−qβ)− pβ tanh pβ − qβ tanh qβ.

It is interesting to consider the behavior of the model at temperatures close to
zero, since modern quantum gadgets operate in this temperature range (µK÷mK).
We have Z →∞ and

〈E〉 = −(p+ q) +O
(
e−2(p+q)β

)
S = ln 2 +O

(
e−2(p+q)β

)
, β →∞. (21)

This result is consistent with the third law of thermodynamics, which states that
the entropy of a system approaches a constant value as the temperature of the
system (and of its environment) adiabatically goes to absolute zero. Note also that
the Helmholtz free energy,

F = − 1

β
lnZ = −(p+ q) +O

(
β−1
)
, β →∞, (22)

approaches to 〈E〉 as the temperature goes to zero.

To better understand the energy scale, we should return to the natural units,
replacing (we accept centimeter as a unit of length)

β → β

c~
, p→ c~p, q → c~q (c~ ≈ 3 · 10−17erg · cm).

For example, in the temperature range under consideration, the values β = 100cm
and p ∼ q ∼ 1cm−1 (physically, these values are more than enough for the es-
timates (21) and (22) to be quite correct) correspond to the inverse temperature
β ≈ 3 · 1018 erg−1 and the energy 〈E〉 ∼ − 6 · 10−17erg, that is, T ≈ 3 · 10−19 erg
(≈ 0.002K). These estimates show that the model under consideration is quite
realistic.

6 Conclusion

In this note, we have described a base technique for working with anticommutatively
decomposed Hamiltonians. This means that a Hamiltonian admits the decomposi-
tion into several parts consisting of linear combination of pairwise anticommuting
Pauli operators. We show by the example of the Trotter-Suzuki algorithm that the
efficiency of the known quantum algorithms for quantum Hamiltonian simulation
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can be significantly improved if the corresponding Hamiltonian can be anticommu-
tatively decomposed. The key point in our consideration is the use of the Pauli
basis, since in this case the exponential of a linear combination of pairwise anti-
commuting Pauli operators can be expressed explicitly as the sum of two operator
terms, where one of them is proportional to the identity, and second is proportional
to the linear combination itself. It turns out that this technique is useful also in
classical Hamiltonian simulation. Moreover, if the parts of an anticommutatively
decomposed Hamiltonian are connected by some simple algebraic relations, then
the exponential of the Hamiltonian admits explicit analytical calculation or the de-
rivation of recurrent expressions for the powers of the Hamiltonian; in the simplest
cases, these parts commute, or their (anti)commutators are proportional to a basis
Pauli operator, or these parts form a closed system of operators with respect to an-
ticommutation, etc. It should be remarked, however, that there is a serious obstacle
in using the technique of anticommutatively decomposed Hamiltonians, since we do
not have any efficient algorithm for obtaining such a decomposition in the case of a
large number of qubits. This problem has been studied [21, 22], for example, within
the framework of graph theory; the main difficulty is that anticommutativity is not
an equivalence relation, that is, anticommutativity of σ̂K with σ̂I and σ̂J does not
imply anticommutativity of σ̂I and σ̂J .
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