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Abstract. From a observational point of view, the central regions of scalar naked
singularities possess a very special spacetime geometry, which in turn leads to ex-
istence of unusual orbital motion near the centers. We consider naked singularities
in the model of static, spherically symmetric, asymptotically flat configurations
of a self-gravitating scalar field minimally coupled to gravity. In this case, the ef-
fective potential of test particles orbiting around a scalar naked singularity has a
minimum even at zero specific angular momentum. This means that the baryonic
matter, captured by the naked singularity in the region of gravitational potential
well near the center, will eventually be concentrated in some spherical shell, which
will be in hydrostatic equilibrium after cooling. We find the conditions of hydro-
static equilibrium of the shell for the polytropic equation of state. In order to show
the observational consequences of the possible existence of such configurations as
real astrophysical objects, in particular in relation to tidal disruption events, we
consider a simple illustrative example.
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1 Introduction

At present, we still do not exactly understand the nature of strongly gravitating
objects in the centers of normal galaxies. It is currently believed that supermassive
black holes are the most likely candidates for the role of these objects. However,
other possibilities that are considered in the literature [1] include, in particular,
wormholes [2, 3, 4], naked singularities [5, 6, 7] or a dense core with the same outer
geometry [8], and boson stars [9, 10]. The best observational results have been
obtained for the centres of our Galaxy and of M87 [11, 12, 13, 14, 15, 16], and
they do not allow us to unambiguously state that we are dealing with black holes.
Moreover, it is shown in [6] using a simple model that a naked singularity can have
both a shadow and a photon sphere. In fact, observations of the orbits of stars near
the centres have a key role in dealing with this question, but there are some obvious
problems with the reasonable geometrical interpretation of such observations.

The observational efficiency directly depends on a model in which the astrop-
hysical data for the central objects will be interpreted. In this article we consider
static, self-gravitating, spherically symmetric configurations that are formed and
supported in equilibrium by a self-interacting real scalar field minimally coupled to
gravity. Our motivation for exploring properties of such mathematical model arose
from the common belief that one should not think of the central objects in galaxies
as being in vacuum, because dark matter surrounding the centers of galaxies cannot
be ignored. In our approach, a nonlinear scalar field represents a kind of anisotropic
fluid and, in fact, is introduced as a model of dark matter [17, 18, 19]; note that it
does not matter whether scalar fields exist in nature.

The geometry of spacetime and the orbital motion around scalar black holes have
been studied much better than the same characteristics of scalar naked singularities.
The main purpose of this article is to study one of the key features of scalar naked
singularities, namely, the presence of a minimum of the lapse metric function near
the center, while in the outer region, the geometry of spacetime is asymptotically
flat and only slightly differs from the Schwarzschild spacetime. Note also that the
family of Schwarzschild naked singularities is parameterized by negative masses and
do exhibit only gravitational repulsion everywhere.

The article is organised as follows. In Sect. 2 we describe the necessary mat-
hematical background for static, spherically symmetric scalar field configurations
restricting our attention to the case of the minimal coupling between curvature and
a real scalar field. Using the so called method of restored potential (or, in other
terminology, the so-called inverse problem method for self-gravitating spherically
symmetric scalar fields), we present a simple example which illustrates the main
characteristic features of scalar naked singularities. Sect. 3 is devoted to studying
bound orbits of free neutral massive test particles; the main astrophysical objects
that we have in mind are the bound orbits of stars in the centres of galaxies. We
show that there is a degenerated stable circular orbit in which test particles have
zero angular momentum and remains at rest all the time. In what follows, we will
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refer to this orbit as orbit of rest. In Sect. 4 we study the equilibrium of a spherical
shell of condensed baryonic matter captured by the scalar naked singularity, which
is considered in Sect. 2. In doing so, we restrict our attention on the polytropic
equation of state and qualitatively consider a possible explanation of bright flares
(the so-called tidal disruption events) in the centers of galaxies.

In this article, we use the geometrical system of units with G = c = 1. In tensor
notation, we use the summation convention over repeated indices, and Greek indices
take the values 0, 1, 2, 3. We also adopt the metric signature (+ − −−) and the
definitions Ri

jkl = ∂kΓ
i
jl − . . ., Rjl = Ri

jil for the curvature and the Ricci tensor,
respectively.

2 Scalar naked singularities

The action with the minimal coupling between curvature and a real scalar field φ
has the form

Σ =

∫ (
− 1

16π
S +

1

8π
(〈dφ, dφ〉 − 2V (φ)) + Lm

)√
|g| d 4x , (1)

where V (φ) is a self-interaction potential, the angle brackets denote the scalar
product with respect to the spacetime metric, and Lm is the matter Lagrangian.
We will write the metric of a spherically symmetric spacetime in the Schwarzschild-
like coordinates as

ds2 = Adt2 − dr2

f
− r2(dθ2 + sin2θ dϕ2), A = fe2F , (2)

where the metric functions A, F , and f depend only on the radial coordinate r.
These functions should be the result of solving the Einstein field equations

Rij −
1

2
Sgij = 8πT φ + 8πT (m).

Assuming that the matter in the action (1) is represented by an isentropic perfect
fluid with polytropic equation of state

P = Kρ1+1/n, (3)

and the energy-momentum tensor

T (m)
ij = (ρ+ P )uiuj − Pgij,

one can use the standard variational procedure for the scalar field in order to find the
four well-known independent Einstein-Klein-Gordon-fluid matter equations. These
equations, together with the equation of state (3), make up the complete system
of field equations for the configuration under consideration and have the form (a
prime means differentiation with respect to r)
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− f ′

r
− f − 1

r2
= φ′

2
f + 2V +

q2

r4
+ 8πρ , (4)

f

r

(
2F ′ +

f ′

f

)
+
f − 1

r2
= φ′

2
f − 2V − q2

r4
+ 8πP , (5)

− fφ′′ − φ′

2
f ′ − φ′f

(
F ′ +

1

2

f ′

f
+

2

r

)
+
dV

dφ
= 0 , (6)

P ′ + (ρ+ P )

(
1

2

f ′

f
+ F ′

)
= 0 . (7)

Note first that eq. (7) can be written in the form

P ′ +
1

2

A′

A
(ρ+ P ) = 0 . (8)

Second, by adding eqs. (4) and (5), one can reduce (5) to the form

F ′ = rφ′
2

+
4πr

f
(ρ+ P ) . (9)

In what follows, we use the background approximation, assuming that the mass
of condensed baryonic matter is relatively small, so that the spacetime metric is
determined only by a self-gravitating scalar field. In other words, we can eliminate
the pressure and density of matter in the right hand sides of eqs. (4) and (9).

The form of the self-interaction potential V (φ) is unknown a priori, but the
method of restored potential is suitable for all physically admissible potentials at
once. This method was proposed in [20, 21, 22] and later was explored in [23, 24, 25,
26, 27] and applied, for example, in [28, 29, 30]. In this article we use the following
quadrature formulae [26]:

F (r) = −
∫ ∞

r

φ′
2
rdr , ξ(r) = r +

∫ ∞

r

(
1− eF

)
dr , (10)

A(r) = 2r2
∫ ∞

r

ξ − 3M

r4
eFdr , f(r) = e−2FA , (11)

Ṽ (r) =
1

2r2

(
1− 3f + r2φ′

2
f + 2 e−F

ξ − 3M

r

)
, (12)

where Ṽ (r) = V (φ(r) and it is required that one of the function φ , F or ξ is
given. Thus, the quadratures (10) and (11) determine the metric functions, while
the formula (12) determines the self-interaction potential as a function of the radial
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coordinate. Next, assuming that φ(r) is piecewise monotone, one can restore the
potential V (φ). It can be seen directly from the quadratures that for all r > 0

F ≤ 0, eF ≤ 1, ξ > 0, ξ′ = eF > 0, ξ′′ = rφ′
2
eF ≥ 0. (13)

The boundary conditions for ξ are

ξ= ξ(0) + αr +O
(
r2
)

(0 ≤ α ≤ 1), r → 0, ξ= r + o(1), r →∞, (14)

and ξ(0) > 0 if φ′ is not identically zero.

We start with the function

ξ(r) =
√
r2 + ar + a2 − a

2
, (15)

where a > 0. Next, by direct differentiation, we obtain

ξ′(r) = eF (r) =
a+ 2r

2
√
r2 + ar + a2

,

φ′(r) =
√
ξ′′(r)e−F (r)/r =

a√
(2r/3)(a+ 2r)(r2 + ar + a2)

.

We do not need an explicit expression for the field function (in terms of the incom-
plete elliptic integral of the first kind), and we note only that it decreases at infinity
as r−1 and diverges logarithmically at r = 0.

The metric function A can be found in analytical form by direct integration
in (11):

A(r) = 1 +
a

3r
−
√
r2 + ar + a2

(
1 +

7r

4a
− 37r2

8a2

)
a+ 6M

6ar

− 3 ln

[
5 +

8a

r
+

8a2

r2
+

(
4 +

8a

r

)(
1 +

a

r
+
a2

r2

)1/2]
(a+ 6M)r2

64a3

+

(
3 ln3− 74

3

)
(a+ 6M)r2

32a3
. (16)

At infinity, the metric behaves like the Schwarzschild solution. In particular,

A(r) = 1− 2M

r
+

3a3 + 18Ma2

40r3
+O(r−4) , r →∞ , (17)

that is, M is the Schwarzschild mass for this configuration. Near the center

A(r) =
a− 6M

6r
+

5a− 18M

8a
+ +

9a+ 54M

16a2
r +O(r2) , r → 0, (18)

so that the configuration is a naked singularity if a > 6M . The interval a ∈ [0, 6M)
corresponds to black holes (the value a = 0 does to the Schwarzschild black hole of
mass M). The value a = 6M determines a regular configuration, but in this case
case fine tuning of the parameters is required.
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Figure 1: On the left: the metric functions A(r) (16) for various values of the

parameter a; the Schwarzschild solution A = 1− 2/r with the same mass (M = 1).

On the right: the effective potentials (20) of freely falling massive particles.

3 Bound orbits

In what follows, it is convenient to choose the unit of length by setting M = 1.

In any static, spherically symmetric spacetime a massive test particle has three
integrals of motion. For the metric of the form (2) they are

(19)
dt

ds
=
E

A
,

dϕ

ds
=

J

r2
,

(
dr

ds

)2
= e−2F

(
E2 − Veff

)
, (19)

Veff = A

(
1 +

J2

r2

)
, (20)

where Veff is the effective potential, E is the specific energy, and J is the specific
angular momentum of a massive test particle. Fig. 1 shows the typical behavior of
the metric function A = A(a, r) and the effective potential Veff = Veff (a, J, r) for
various values of the parameter a and specific angular momentum J .

Circular orbits or, more generally, bound orbits exist if the effective potential
has a minimum. For black holes of any origin, the effective potential reaches a
minimum only at certain values of the specific angular momentum, J > JISCO, where
JISCO determines the innermost stable circular orbit. The key feature of scalar field
naked singularities is the existence of some radius rmin at which the metric function
A(a, r) = Veff (a, 0, r) reaches a minimum value. This means, in turn, that a test
particle with zero angular momentum and the energy Emin = Veff (a, 0, rmin) will
remain in the state of rest all the time. Particles with zero angular momentum and
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Figure 2: Left panel: The shape of the orbit that could be formed by a realistic

astrophysical configuration in the process of capturing a star; the parameters are

a = 10.0, J = 1.1, E = 0.9606, rmin = 18.2, rmax = 50.4. Right panel: an extremely

prolate orbit; the parameters are a = 10.0, J = 4.4, E = 0.9865, rmin = 5.43,

rmax = 8.3 · 103.

energy Emin < E < 1 will perform radial oscillations. If a particle has small nonzero
angular momentum, then its orbit can have very unusual shape (see Fig. 2). The
shape of a bound orbit is determined by the equation

ϕ′(E, J, r) = 2J
eF

r2
√
E2 − Veff

,

which follows from (19) and can be easily solved numerically. Note that the para-
meters a and J in Fig. 2 were specially chosen in order to obtain closed orbits, but
generally speaking this is not the case.

Taking into account these features of the orbital motion near the center of a
scalar naked singularity, the following question arises: what is the late-time asymp-
totic behavior of matter captured by the naked singularity from its outer region.
We cannot expect to solve this problem rigorously, even if we assume that the ini-
tial conditions are known. However, the examples discussed above show that the
movement of matter in the central region of the potential well should be highly
chaotic and collision-dominated. Thus, these examples partly justify our intuitive
assumption that the matter is cooling down and, after some time, comes to the equi-
librium state of an isentropic fluid. In the next section, we study the parameters of
the equilibrium state of a spherical shell of condensed matter in the gravitational
potential well of a scalar naked singularity.
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Figure 3: The plot on the left shows rmin and rmax (the marginal radii of the spherical

shell of condensed baryonic matter) as functions of the ”constant thickness” R. The

plot on the right shows typical density distributions in the shell.

4 Equilibrium spherical shell of condensed baryonic matter

with the polytropic equation of state

In this section, it is convenient to go back for a while to the usual length-mass-time
units, for example to Gauss units. Recall that we neglected the contribution of
matter to the geometry of spacetime near the centers of scalar naked singularities.
Let us write out once again the polytropic equation of state (3) and the hydrostatic
equilibrium equation (8),

P = Kρ1+1/n, P ′ +
1

2

A′

A
(ρc2 + P ) = 0 , (21)

since it is they that determine the properties of the spherical shell of condensed
matter in the background approximation. It turns out that the general solution of
this set of equations can be found using the Emden substitution

ρ = ρ0θ
n, 0 ≤ θ(r) ≤ 1 , (22)

where the value θ = 0 corresponds to the inner and outer edges of the shell, while
the value θ = 1 with θ′ = 0 determines the maximum of ρ(r). As a result we have

P = Kρ
1+1/n
0 θn+1, P ′ = (n+ 1)Kρ

1+1/n
0 θnθ′,

ρc2 + P = ρ0θ
nc2 +Kρ

1+1/n
0 θn+1 = ρ0θ

n (c2 +Kρ
1/n
0 θ) ,
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so that the second equation in (21) takes the form

(n+ 1)Kρ
1/n
0 θ′ +

1

2

A′

A
(c2 +Kρ

1/n
0 θ) = 0 .

From this equation and (23), we obtain the general solution for equilibrium shell of
condensed matter in the background approximation:

ρ =

(
c2

K

)n (R
A

) 1
2(n+1)

− 1

n . (23)

The dimensionless constant R determines (or is determined by) the inner and
outer edges as the two roots, say rmin and rmax, of the equation A(r) = R; note
that R > A(rc), where A′(rc) = 0 and rc is the radius of the sphere with the
highest density. The factor K in (21) has the dimension [K] = cm3/n+2/(g1/ns2)
and depends only on the index n and the chemical composition, temperature, and
specific entropy of matter. We take reasonable values n = 5/3 for the polytropic
index and ρ∗ = 107 g/cm3 for the characteristic density ρ∗ = (c2/K)5/3. In our
model the metric function A is given by the expression (16) and has

rc ≈ 0.825 , A(rc) ≈ 0.497 . (24)

The main features of the model are presented in Fig. 3. Let m = m(R) be the
mass of baryonic matter contained in the spherical shell. We will also assume
M = 4 ·106M� for the central mass, since this value corresponds to the typical
masses of galactic centers including Sgr A*. Then for the values R taken on the
right panel in Fig. 3, we find m(0.51) ≈ 2.3 ·103M� and m(0.52) ≈ 7.1 ·103M�.

5 Conclusion

The results of this article are threefold. First, we obtain the full system of the sp-
herically symmetric, static Einstein-Klein-Gordon-fluid matter equations with the
polytropic equation of state. In the background approximation, that is, neglecting
the contribution of matter, we have constructed a two-parameter family of asymp-
totically flat configurations of a self-gravitating scalar field minimally coupled to
gravity; in some domain of parameters, these configurations are naked singularities.
Second, bound orbits near the centres of scalar naked singularities are studied. It
is shown that the geodesic motion of test particles in this region is very chaotic,
so that they will be over time concentrated in the gravitational potential well of
a naked singularity. This assumption directly leads to the model of a spherically
symmetric shell of baryonic condensed matter in a static equilibrium. And third,
using the Emden substitution, we find the general solution of the hydrostatic equi-
librium equation in the background approximation. In our model we have in mind
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that test particles are stars and gas clouds in the centres of galaxies, the nonlinear
scalar field is considered as an idealized model of dark matter, and the shell of con-
densed matter is formed by capturing baryonic matter from outer region; in other
words, we assume that scalar naked singularities may exist in the centers of galax-
ies. In particular, the shells of condensed matter give us an alternative explanation
of the so-called tidal disruption events [31, 32, 33]. Namely, these events may be
the result of collisions of stars with a shell of condensed matter. In this connection,
we have considered the density distribution in an illustrative example with more
or less realistic parameters. However, this model can become really popular when
the resolution of observations reaches a value of several tens of masses (in units of
length) of central objects.
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