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Abstract. We consider asymptotically flat, rotating configurations of a self-
gravitating real scalar field minimally coupled to Einstein gravity. For the sake
of completeness and to introduce convenient notation, we formulate the Einstein-
Klein-Gordon equations in the orthonormal tetrad uniquely associated with the
metric of a nonstationary axisymmetric spacetime. First, in the stationary case,
we study Bianchi identities to find appropriate variants for reducing the Einstein-
Klein-Gordon system to a complete subsystem of independent equations. It turns
out that this procedure can be performed in three ways. Second, assuming that
the rotation is slow, the full system of these equations is linearized about a spheri-
cally symmetric scalar field configuration, which may be thought of as some exact
solution. In doing so, we do not assume that the scalar field is small, and do not
specify the type of the basic spherically symmetric configuration, which can be a
black hole, a naked singularity, or a wormhole.
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1 Introduction

We study the mathematical structure of the Einstein-Klein-Gordon equations in a
stationary axisymmetric spacetime, where stationarity and axisymmetry are intui-
tively associated with the rotation of a scalar field supporting such a configuration.
One may suppose that a real scalar field exists in nature as a fundamental consti-
tuent of matter. On the other hand, it can be considered as a phenomenological
model representing a kind of anisotropic fluid, for example, of dark matter in ga-
laxies [1, 2, 3, 4, 5]. In the latter case, the most attractive property of this dark
matter model is that a real scalar field acts on other matter only via the gravita-
tional interaction (the spacetime curvature). Hence, this model is an interesting
alternative to the cold dark matter phenomenology (see e.g. [6, 7, 8, 9, 10]).

At present, the centers of galaxies and strongly gravitating objects located in
them are ones of the most important targets for astronomical observations. It is
currently believed that supermassive black holes are the most likely candidates for
the role of the central objects. However, the available data are so far insufficient to
identify these objects and even to definitely distinguish between black holes, naked
singularities, boson stars, and wormholes [11, 12, 13, 14, 15, 16, 17, 18]. Astrono-
mical observations can be interpreted only on the basis of a specific mathematical
model, in the framework of which one should not think of the central objects in
galaxies as being in vacuum, since dark matter surrounding the centers of galaxies
cannot be ignored. In our approach, dark matter is modeled by a nonlinear scalar
field, so that there are uncountable number of degrees of freedom in the choice of
the scalar field self-interaction potential.

Our main goal in this article is to obtain the contracted Bianchi identities for a
stationary axisymmetric spacetime and then to use them for isolating a complete
subsystem of independent equations from the full Einstein-Klein-Gordon system.
It turns out that there are three ways to performed this operation; as a result, one
obtains five independent equations instead of the seven equations of the original
system. Apart from that, we consider slowly rotating configurations. In this case, a
first order approximation with respect to the perturbations of the spacetime metric
is sufficient. We derive the linearized Einstein-Klein-Gordon equations about a
spherically symmetric scalar field configuration, which may be thought of as some
exact solution. Slowly rotating scalar field configurations have been investigated in
a wide context in a number of articles (see [19, 20, 21, 22] and references within).

The paper is organized as follows. In Section 2, writing the metric of a stati-
onary axisymmetric spacetime in the usual form, we derive the full system of the
Einstein-Klein-Gordon equations. We consider both classical and phantom scalar
fields. Section 3 is devoted to the mathematical investigation of the contracted
Bianchi identities in stationary axisymmetric spacetimes. In this section, we prove
three propositions about the reduction of the full system of the Einstein-Klein-
Gordon equations. We derive and analyze the linearization of the field equations in
Section 4. And finally, Section 5 contains a brief discussion and some concluding
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remarks concerning some possible applications and observational aspects of stu-
dying slowly rotating scalar field configurations.

Throughout this article, we use the geometrical system of units (G = c = 1) and
adopt the metric signature (+ − −−). In tensor notation, we use the summation
convention over repeated indices; Latin indices take the values 0,1,2,3 while Greek
indices run from 1 to 3. The signs of the Riemann and Ricci tensor fields are defined
such that Ri

jkl = ∂kΓ
i
jl − . . . and Rjl = Ri

jil, respectively.

2 Field equations

2.1 Action, bases, and notations

Assuming the minimal coupling between curvature and a real scalar field φ, we
start with the action

Σ =
1

8π

∫ (
−1

2
S + ε〈dφ, dφ〉 − 2V (φ)

)√
|g| d 4x , (1)

where S is the scalar curvature, ε = ±1 is the sign of the scalar field kinetic term,
V (φ) is a self-interaction potential of the scalar field, and the angle brackets denote
the scalar product induced by the metric. The metric of a general axisymmetric
spacetime in the standard form can be written as

ds2 = A2dt2 −B2dr2 − C2dθ2 −D2(dϕ− σdt)2, (2)

where the metric functions A, B, C, D, σ depend only on t, r, and θ.

For the metric (22), the associated orthonormal basis of vector fields and its
dual basis are

e0 =
1

A
(∂t + σ∂φ), e1 =

1

B
∂r, e2 =

1

C
∂θ, e3 =

1

D
∂φ,

e0 = Adt, e1 = Bdr, e2 = Cdθ, e3 = D(dφ− σdt).
The corresponding orthonormal basis of 2-forms, in terms of which the curvature
will be expressed, reads

α1 = e0∧ e1, α2 = e0∧ e2, α3 = e0∧ e3, ∗α1 = e3∧ e2, ∗α2 = e1∧ e3, ∗α3 = e2∧ e1,

where ∗ is the Hodge star operator.

It is also convenient to introduce the following notation: the directional deriva-
tives along the basis vector fields will be denoted by the corresponding subscript
indices placed in the opposite order in parentheses (that can be omitted in practical
calculations). For example,

e0φ ≡ φ(0) =
1

A
∂tφ , e0e1C ≡ C(1)(0) =

1

A
∂t

(
1

B
∂rC

)
. (3)
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General expressions for the curvature are given in [23] in a more general context
and in other notation. Nevertheless, for the sake of completeness, we present the
calculations of the connection components in Appendix A and the curvature com-
ponents in Appendix B in orthonormal bases of vector fields, 1-forms, and 2-forms
associated with the metric. For stationary configurations, there is no dependence
of the metric on time, however, we have performed the calculations in the general
case for subsequent references.

2.2 Einstein equations

In this article, we are mainly interested in the stationary case when the components
of the Einstein tensor Gij = Rij − (1/2)Sgij in the basis {ei ⊗ ej} can be easily
obtain from the results of Appendix B. The algebraically independent components
are

G00 = −
B(2)(2)

B
−
C(1)(1)

C
−
D(1)(1)

D
−
D(2)(2)

D

−
B(2)D(2)

BD
−
C(1)D(1)

CD
−
σ2

(1)D
2

4A2
−
σ2

(2)D
2

4A2
, (4)

G11 =
A(2)(2)

A
+
D(2)(2)

D
+
A(1)C(1)

AC
+
A(1)D(1)

AD

+
A(2)D(2)

AD
+
C(1)D(1)

CD
+
σ2

(1)D
2

4A2
−
σ2

(2)D
2

4A2
, (5)

G22 =
A(1)(1)

A
+
D(1)(1)

D
+
A(2)B(2)

AB
+
A(1)D(1)

AD

+
A(2)D(2)

AD
+
B(2)D(2)

BD
−
σ2

(1)D
2

4A2
+
σ2

(2)D
2

4A2
, (6)

G33 =
A(1)(1)

A
+
A(2)(2)

A
+
B(2)(2)

B
+
C(1)(1)

C
+
A(2)B(2)

AB

+
A(1)C(1)

AC
−

3σ2
(1)D

2

4A2
−

3σ2
(2)D

2

4A2
, (7)

G03 =

(
σ(1)D

2A

)
(1)

+
σ(1)D(1)

A
+
σ(2)B(2)D

2AB

+

(
σ(2)D

2A

)
(2)

+
σ(2)D(2)

A
+
σ(1)C(1)D

2AC
, (8)

G12 = −
A(2)(1)

A
−

D(2)(1)

D
+

A(1)B(2)

AB
+

B(2)D(1)

BD
+

σ(1)σ(2)D
2

2A2
. (9)
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Analogously, in the stationary case, we obtain (from Appendix C) the energy-
momentum tensor components in the orthonormal basis {ei ⊗ ej}:

8πT
(φ)
00 = ε(φ2

(1) + φ2
(2)) + 2V , (10)

8πT
(φ)
11 = ε(φ2

(1) − φ2
(2))− 2V , (11)

8πT
(φ)
22 = ε(−φ2

(1) + φ2
(2))− 2V , (12)

8πT
(φ)
33 = ε(−φ2

(1) − φ2
(2))− 2V , (13)

8πT
(φ)
03 = 0, (14)

8πT
(φ)
12 = 2εφ(1)φ(2). (15)

Thus the Einstein equations in the orthonormal basis,

Gij = 8πT
(φ)
ij , (16)

are completely determined by the expressions (4) – (15): it is necessary to equate
their right parts.

2.3 Klein-Gordon equations

The scalar field under consideration obeys the equation �φ + εV ′
φ = 0 or, in the

coordinate form,

1√
|g|
∂ig

ij
√
|g|∂jφ+ εV ′

φ = 0, φ = φ(t, r, θ). (17)

By substituting the metric (22) in equation (17), we find

1√
|g|
∂ig

ij
√
|g|∂jφ =

1

ABCD

[
∂t
ABCD

A2
∂tφ− ∂r

ABCD

B2
∂rφ− ∂θ

ABCD

C2
∂θφ

]

=
1

BCD
(BCDφ(0))(0) −

1

ACD
(ACDφ(1))(1) −

1

ABD
(ABDφ(2))(2)

= φ(0)(0) − φ(1)(1) − φ(2)(2) +
(BCD)(0)

BCD
φ(0) −

(ACD)(1)

ACD
φ(1) −

(ABD)(2)

ABD
φ(2).

Thus equation (17) for the axisymmetric spacetime can be written as

φ(0)(0) − φ(1)(1) − φ(2)(2)

+
(BCD)(0)

BCD
φ(0) −

(ACD)(1)

ACD
φ(1) −

(ABD)(2)

ABD
φ(2) + εV ′

φ = 0.

In the stationary case, it takes the form

φ(1)(1) + φ(2)(2) +
(ACD)(1)

ACD
φ(1) +

(ABD)(2)

ABD
φ(2) − εV ′

φ = 0. (18)
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3 Bianchi identities and independent equations

In the stationary axisymmetric spacetime, we have the six algebraically independent
Einstein equations (16) and the Klein-Gordon equation (18) for the six unknown
functions, namely, the field φ and the five metric functions A,B,C,D, σ. Moreo-
ver, we should impose one coordinate condition on the metric functions, so that the
number of unknown functions is effectively five. This means that some two equati-
ons in the system of seven equations (16) and (18) are (differential) consequences of
the others, so that we should reduce the whole system of the seven equations to a
complete independent subsystem of five equations. It turns out that this procedure
can be performed in three ways. In order to isolate independent equations, it is
necessary to take into account the contracted Bianchi identities.

Let Υ = Υije
i ⊗ ej be a symmetric tensor field that obeys the ’differential

conservation law’
Υij;kg

jk = 0. (19)

We have

Υ10;0 = −
A(1)

A
(Υ00 + Υ11)−

A(2)

A
Υ12 +

σ(1)D

2A
Υ03,

Υ11;1 = (Υ11)(1) + 2
B(2)

B
Υ12,

Υ12;2 = (Υ12)(2) +
C(1)

C
(Υ11 −Υ22),

Υ13;3 =
D(1)

D
(Υ11 −Υ33) +

D(2)

D
Υ12 −

σ(1)D

A
Υ03,

Υ20;0 = −
A(2)

A
(Υ00 + Υ22)−

A(1)

A
Υ12 +

σ(2)D

2A
Υ03,

Υ21;1 = (Υ21)(1) +
B(2)

B
(Υ22 −Υ11),

Υ22;2 = (Υ22)(2) + 2
C(1)

C
Υ12,

Υ23;3 =
D(2)

D
(Υ22 −Υ33) +

D(2)

D
Υ12 −

σ(2)D

A
Υ03.

The substitution of these relations into (19) yields the equations

− (Υ11)(1) − (Υ12)(2) −
A(1)

A
(Υ00 + Υ11)−

C(1)

C
(Υ11 −Υ22)

−
D(1)

D
(Υ11 −Υ33)−

(
A(2)

A
+ 2

B(2)

B
+
D(2)

D

)
Υ12 +

σ(1)D

A
Υ03 = 0, (20)

− (Υ21)(1) − (Υ22)(2) −
A(2)

A
(Υ00 + Υ22)−

B(2)

B
(Υ22 −Υ11)

−
D(2)

D
(Υ22 −Υ33)−

(
A(1)

A
+ 2

C(1)

C
+
D(1)

D

)
Υ12 +

σ(2)D

A
Υ03 = 0. (21)
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Let us assume that Υ = G−8πT . Taking into account the identity Gij;kg
jk = 0,

by direct calculation we can find that equations (20) and (21) are equivalent to the

equations 2φ(1)(�φ+εV ′(φ)) = 0 and 2φ(2)(�φ+εV ′(φ)) = 0, respectively. Next, we

suppose that the Klein-Gordon equation (18) holds. Then equations (20) and (21)
become identities.

Now we are able to prove the following propositions.

Proposition 1. In a stationary axisymmetric spacetime defined by the action (1) and
the metric (22), the whole system of field equations (16) and (18) is equivalent to the
complete independent subsystem consisting of the Klein-Gordon equation (18) and
the four Einstein equations G00 = 8πT00, G11 = 8πT11, G22 = 8πT22, G12 = 8πT12.

In this case, we have Υ00 = 0, Υ11 = 0, Υ22 = 0, and Υ12 = 0. The identities (20)
and (21) now read

D(1)

D
Υ33 +

σ(1)D

A
Υ03 = 0,

D(2)

D
Υ33 +

σ(2)D

A
Υ03 = 0.

The determinant of this linear system,
(
D(1)σ(2) −D(2)σ(1)

)
/A, is nonzero, that is,

the system has only the trivial solution Υ33 = Υ03 = 0. �

Proposition 2. In a stationary axisymmetric spacetime defined by the action (1) and
the metric (22), the whole system of field equations (16) and (18) is equivalent to the
complete independent subsystem consisting of the Klein-Gordon equation (18) and
the four Einstein equations G00 = 8πT00, G22 = 8πT22, G33 = 8πT33, G03 = 8πT03.

If the four Einstein equations Υ00 = 0, Υ22 = 0, Υ33 = 0, and Υ03 = 0 hold, then
the identities (20) and (21) take the form

−(Υ11)(1) − (Υ12)(2) −
(ACD)(1)

ACD
Υ11 −

(AB2C)(2)

AB2C
Υ12 = 0,

−(Υ21)(1) +
B(2)

B
Υ11 −

(AC2D)(1)

AC2D
Υ12 = 0.

Suppose that Υ11 6= 0 and Υ12 6= 0. Writing these identities as

Υ11

[
ln
(
Υ11ACD

)]
(1)

+ Υ12

[
ln
(
Υ12AB

2D
)]

(2)
= 0,

−Υ11

[
lnB

]
(2)

+ Υ12

[
ln
(
Υ12AC

2D
)]

(1)
= 0,

we see that the determinant of this linear system is nonzero, which gives us the
required contradiction. �

In an analogous manner, we can prove
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Proposition 3. In a stationary axisymmetric spacetime defined by the action (1) and
the metric (22), the whole system of field equations (16) and (18) is equivalent to the
complete independent subsystem consisting of the Klein-Gordon equation (18) and
the four Einstein equations G00 = 8πT00, G11 = 8πT11, G22 = 8πT22, G33 = 8πT33.

4 Linearization of the field equations

The complexity of nonlinear equations (16) and (18) does not allow one to study
them in a general analytical way. In this section, we obtain the linearized field
equations about a spherically symmetric background spacetime. Without loss of
generality, we can take the metric of a spherically symmetric spacetime in the form

ds2 = A2
0dt

2 −B2
0dr

2 − C2
0dθ

2 − C2
0 sin2 θdϕ2, (22)

and assume that it is an exact solution of the Einstein-Klein-Gordon equations with
some distribution Φ0 of the scalar field; of course, the functions A0, B0, C0, and Φ0

depend only on the radial coordinate r.

Any static, asymptotically flat, spherically symmetric solution of the Einstein-
Klein-Gordon equations can be a black hole, a naked singularity, a regular solution
(boson stars), or a wormhole if we are dealing with a phantom scalar field with
ε = −1. At present, a number of exact solutions for self-gravitating nonlinear scalar
fields are known [24, 25, 26, 27, 29, 30, 31, 32], with both the positive and negative
kinetic terms. All of them have been obtained using the so-called ’inverse problem
method for a self-gravitating scalar field minimally coupled to gravity’ or, in other
words, the ’restored potential method’ [33, 34, 35, 36, 37]. In order to obtain the
required structure of the spacetime geometry in the inner region of a galaxy, we have
a significant degree of freedom in choosing the self-interaction potential of a scalar
field, or equivalently, in the spatial distribution of the field. Thus, there are wide
opportunities for studying linearized equations (16) and (18) near an analytical
spherically symmetric solution. It is especially important that there is a general
solution of the Einstein-Klein-Gordon equations in the form of quadratures, so that
this mathematical technique allows us to examine the problem, in some sense, for
all admissible potentials simultaneously. The quadratures are written explicitly
in [37] for the coordinate conditions C0 = r (black holes, naked singularities, and
regular solutions) and B0 = 1/A0 (all the already listed and wormholes).

We will consider the linearization of the full unreduced system (16) and (18),
since the complete independent linearized subsystems also can be isolated in ac-
cordance with Propositions 1 – 3. In doing so, we have to perturb the metric and
the scalar field of the exact spherically symmetric solution. In other words, the
unknown functions in equations (16) and (18) should be represented in the form
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A = A0 + τa(r, θ) ,

B = B0 + τb(r, θ) ,

C = C0 + τc(r, θ) ,

D = C0 sin θ + τd(r, θ) ,

φ = Φ0 + τψ(r, θ) .

After substituting these expressions into equations (16) and (18) and restricting
them only to linear terms in τ , we obtain for a(r, θ) , b(r, θ) , c(r, θ) , d(r, θ) , ψ(r, θ)
the following equations:

{00} :
1

B3
0

(
−6

B′
0C

′
0

B0C0

+ 2
C ′

0
2

C2
0

+ 4
C ′′

0

C0

+ 2 εΦ′
0

2

)
b

− 1

B2
0C0

(
B′

0C
′
0

B0C0

− C ′
0

2

C2
0

− C ′′
0

C0

+ 2
B2

0

C2
0

)
c

− 1

sin θB2
0C0

(
B′

0C
′
0

B0C0

− C ′
0

2

C2
0

− C ′′
0

C0

+
B2

0

C2
0

)
d

+ 2
C ′

0

B3
0C0

∂rb+
1

B2
0C0

(
B′

0

B0

− C ′
0

C0

)
∂rc

+
1

sin θB2
0C0

(
B′

0

B0

− C ′
0

C0

)
∂rd−

∂2
r c

B2
0C0

− ∂2
θb

B0C2
0

− ∂2
θd

sin θ C3
0

− cot θ

B0C2
0

∂θb+
cot θ

C3
0

∂θc

− 2ε
Φ′

0

B2
0

∂rψ − 2

(
dV

dΦ

)
Φ0

ψ = 0 , (23)

{11} : −2
A′

0C
′
0

A2
0B

2
0C0

a− 1

B3
0

(
4
A′

0C
′
0

A0C0

+ 2
C ′

0
2

C2
0

− 2 εΦ′
0

2

)
b

− 1

B2
0C0

(
A′

0C
′
0

A0C0

+
C ′

0
2

C2
0

− 2
B2

0

C2
0

)
c

− 1

sin θB2
0C0

(
A′

0C
′
0

A0C0

+
C ′

0
2

C2
0

− B2
0

C2
0

)
d

+ 2
C ′

0

A0B2
0C0

∂ra+
1

B2
0C0

(
A′

0

A0

+
C ′

0

C0

)
∂rc

+
1

sin θB2
0C0

(
A′

0

A0

+
C ′

0

C0

)
∂rd+

∂2
θa

A0C2
0

+
∂2
θd

sin θ C3
0

+
cot θ

A0C2
0

∂θa−
cot θ

C3
0

∂θc− 2ε
Φ′

0

B2
0

∂rψ + 2

(
dV

dΦ

)
Φ0

ψ = 0 , (24)
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{22} :

(
A′

0B
′
0

A2
0B

3
0

− A′′
0

A2
0B

2
0

− A′
0C

′
0

A2
0B

2
0C0

)
a+

1

B3
0

(
3
A′

0B
′
0

A0B0

− 2
A′

0C
′
0

A0C0

− 2
A′′

0

A0

− 2
C ′

0
2

C2
0

+ 3
B′

0C
′
0

B0C0

− 2
C ′′

0

C0

− 2 εΦ′
0

2

)
b

− C ′
0

2

B2
0C

3
0

c− 1

sin θB2
0C0

(
A′

0C
′
0

A0C0

− B′
0C

′
0

B0C0

+
C ′′

0

C0

+
C ′

0
2

C2
0

)
d

−
(

B′
0

A0B3
0

− C ′
0

A0B2
0C0

)
∂ra−

(
A′

0

A0B3
0

+
C ′

0

B3
0C0

)
∂rb

+
C ′

0

B2
0C

2
0

∂rc+
1

sin θB2
0C0

(
A′

0

A0

− B′
0

B0

+
C ′

0

C0

)
∂rd+

∂2
ra

A0B2
0

+
∂2
rd

sin θB2
0C0

+ 2ε
Φ′

0

B2
0

∂rψ +
cot θ

A0C2
0

∂ra+ 2

(
dV

dΦ

)
Φ0

ψ = 0 , (25)

{33} :

(
A′

0B
′
0

A2
0B

3
0

− A′′
0

A2
0B

2
0

)
a+

(
3
C ′

0B
′
0

B4
0C0

− 2(ε−1)
Φ′

0
2

B3
0

+ 2
C ′

0
2

B3
0C

2
0

− 2
A′′

0

A0B3
0

− 2
C ′′

0

B3
0C0

+ 3
A′

0B
′
0

A0B4
0

)
b+

(
C ′

0
2

B2
0C

3
0

− C ′′
0

B2
0C

2
0

+
B′

0C
′
0

B3
0C

2
0

)
c

+
C ′

0
2

sin θB2
0C

3
0

d− B′
0

A0B3
0

∂ra−
(

C ′
0

B3
0C0

+
A′

0

A0B3
0

)
∂rb

−
(

C ′
0

B2
0C

2
0

+
B′

0

B3
0C0

)
∂rc−

C ′
0

sin θB2
0C

2
0

∂rd+
∂2
ra

A0B2
0

+
∂2
r c

B2
0C0

+
∂2
θa

A0C2
0

+
∂2
θb

B0C2
0

+ 2(ε−1)
Φ′

0

B2
0

∂rψ + 2

(
dV

dΦ

)
Φ0

ψ = 0 , (26)

{03} :
sin θC0

A0B2
0

∂2
rσ +

(
−sin θB′

0C0

A0B3
0

+ 4
sin θC ′

0

A0B2
0

− sin θA′
0C0

A2
0B

2
0

)
∂rσ

+
sin θ

A0C0

∂2
θσ + 3

cos θ

A0C0

∂θσ = 0 , (27)

{12} : −cot θC ′
0

B0C3
0

c+
cot θ

B0C2
0

∂rc+
C ′

0

A0B0C2
0

∂θa+

(
cot θ

B0C2
0

+
A′

0

A0B2
0C0

)
∂θb

− ∂θ∂ra

A0B0C0

+
C ′

0

sin θC3
0B0

∂θd− 2ε
Φ′

0

B0C0

∂θψ −
∂θ∂rd

sin θC2
0B0

= 0 , (28)

where a prime denotes differentiation of the basic metric functions A0, B0, C0, and
Φ0 with respect to the radial coordinate r.
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5 Conclusions

There are some obvious applications of linearized equations (23) – (28). First, it is
well known that boson stars, that is, self-gravitating configurations of a scalar field
can mimic stellar-mass black holes in the spherically symmetric approximation. At
the same time, there are plausible arguments and observational data that black
holes born from single stars rotate very slowly, regardless of initial rotation rate
at the moment of formations [38]. Therefore, we can expect that the solutions of
the linearized equations will correctly describe such slowly rotating configurations.
Second, for any type of supermassive configurations mentioned above, the scalar
field describes the surrounding dark matter, so that we should take into account
the angular momentum of galactic halos and their central parts. In this case,
however, one can also expect a slow (differential) rotation of both galactic halos
and the strongly gravitating objects at galactic centers [39, 40, 41]. Third, precision
measurements and computer simulations of the orbital parameters of S-stars near
the center of our Galaxy should take into account the rotational perturbations of
the spacetime metric [42, 43, 44, 45].

Note finally that modern observations, especially in dark matter dominated
dwarf galaxies, show an approximately constant dark matter density near galactic
centers, while the standard n-body simulation shows a negative power law for the
central distribution of dark matter. In this connection, we also can hope that this
cusp-core problem, as it commonly called [46, 47], has a partial solution in the
rotating dark halo model.

References

[1] J Lee, I Koh Galactic halos as boson stars Phys. Rev. D 53, 2236 – 2239 (1996)
arXiv:hep-ph/9507385

[2] Matos T and Guzmán F S. On the spacetime of a galaxy Class. Quantum Grav.
18, pp. 5055 – 5064 (2001) (arXiv: gr-qc/0108027)

[3] E W Mielke, B Fuchs, F E Schunck Dark matter halos as Bose-Einstein con-
densates (2006) (arXiv: astro-ph/0608526)

[4] V I Dokuchaev, Yu N Eroshenko Weighing of the dark matter at
the center of the Galaxy JETP Letters 101, pp. 777 – 782 (2015)
doi:10.1134/S0021364015120048

[5] D Benisty, E I Guendelman Interacting diffusive unified dark energy and dark
matter from scalar fields Eur. Phys. J. C 77, 396 (2017) arXiv:1701.08667
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Appendix

A Connection 1-forms

The metric (2) we are dealing with has the form

ds2 = A2dt2 −B2dr2 − C2dθ2 −D2(dϕ− σdt)2,

where the metric functions

A = A(t, r, θ), B = B(t, r, θ), C = C(t, r, θ), D = D(t, r, θ), σ = σ(t, r, θ)

depend, in the general case of a nonstationary spacetime, on three coordinates,
because the axial symmetry excludes dependence on the coordinate ϕ; there is also
no dependence on the time coordinate in the stationary case.

All calculations below are performed using the Cartan structure equations [23]
in the orthonormal bases defined at the beginning of Section 2. We also have used
the notation (3) for the directional derivatives. The first structure equation has the
form

dei + ωij ∧ ej = 0 ,

where ω0
α = ωα0 and ωαβ = −ωβα due to orthonormality of the basis. From this

structure equation we find (the explicit expressions for the exterior derivatives dei

can be calculated directly in the usual way and are therefore omitted here) the
algebraically independent connection 1-forms

ω0
1 =

A(1)

A
e0 +

B(0)

B
e1 +

σ(1)D

2A
e3 , ω0

2 =
A(2)

A
e0 +

C(0)

C
e2 +

σ(2)D

2A
e3 ,

ω0
3 =

σ(1)D

2A
e1 +

σ(2)D

2A
e2 +

D(0)

D
e3 , ω1

2 =
B(2)

B
e1 −

C(1)

C
e2 ,

ω1
3 =

σ(1)D

2A
e0 −

D(1)

D
e3 , ω2

3 =
σ(2)D

2A
e0 −

D(2)

D
e3 .

B Curvature

From the second structure equation,

1

2
Rijkl e

k∧ el = gim (dωmj + ωmp ∧ ω
p
j ) ,

we obtain (omitting again the direct calculations of dωij) the curvature components
in the orthonormal basis of 2-forms of Section 2.

The independent components can be written as
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R0101 = −
A(1)(1)

A
+
B(0)(0)

B
−
A(2)B(2)

AB
+

3σ2
(1)D

2

4A2
;

R0202 = −
A(2)(2)

A
+
C(0)(0)

C
−
A(1)C(1)

AC
+

3σ2
(2)D

2

4A2
;

R0303 =
D(1)(1)

D
−
A(1)D(1)

AD
−
A(2)D(2)

AD
−
σ2

(1)D
2

4A2
−
σ2

(2)D
2

4A2
;

R2121 =
B(2)(2)

B
+
C(1)(1)

C
−
B(0)C(0)

BC
; R2323 =

C(1)D(1)

CD
+
σ2

(2)D
2

4A2
;

R1313 =
D(1)(1)

D
−
B(0)D(0)

BD
+
B(2)D(2)

BD
+
σ2

(1)D
2

4A2
;

R0102 = −
A(2)(1)

A
+
A(1)B(2)

AB
+

3σ(1)σ(2)D
2

4A2
;

R0103 =

(
σ(1)D

2A

)
(0)

+
σ(1)D(0)

A
; R0203 =

(
σ(2)D

2A

)
(0)

+
σ(2)D(0)

A
;

R0132 = −
(
σ(1)D

2A

)
(2)

−
σ(1)D(2)

2A
−
σ(2)D(1)

2A
+
σ(2)C(1)D

2AC
;

R0113 =

(
σ(1)D

2A

)
(1)

+
σ(1)D(1)

A
+
σ(2)B(2)D

2AB
;

R0121 =
B(2)(0)

B
−
A(2)B(0)

AB
; R0221 = −

C(1)(0)

C
+
A(1)C(0)

AC
;

R0232 = −
(
σ(2)D

2A

)
(2)

−
σ(2)D(2)

A
−
σ(1)C(1)D

2AC
;

R0213 =

(
σ(2)D

2A

)
(1)

+
σ(2)D(1)

2A
+
σ(1)D(2)

2A
−
σ(1)B(2)D

2AB
;

R0313 =
D(1)(0)

D
−
A(1)D(0)

AD
; R0332 = −

D(2)(0)

D
+
A(2)D(0)

AD
;

R0321 =

(
σ(1)D

2A

)
(2)

−
(
σ(2)D

2A

)
(1)

+
σ(1)B(2)D

2AB
−
σ(2)C(1)D

2AC
;

R2113 =
σ(2)B(0)D

2AB
; R2132 =

σ(1)C(0)D

2AC
;

R3213 = −
D(2)(1)

D
+
B(2)D(1)

AD
−
σ(1)σ(2)D

2

4A2
.
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Calculating the curvature, we have used the following identities:

A(1)(2)

A
−
A(2)C(1)

AC
=
A(2)(1)

A
−
A(1)B(2)

AB
,

B(0)(2)

B
−
B(2)C(0)

BC
=
B(2)(0)

B
−
A(2)B(0)

AB
,

C(0)(1)

C
−
B(0)C(1)

BC
=
C(1)(0)

C
−
A(1)C(0)

AC
,

D(0)(2)

D
−
C(0)D(2)

CD
=
D(2)(0)

D
−
A(2)D(0)

AD
,

D(0)(1)

D
−
B(0)D(1)

BD
=
D(1)(0)

D
−
A(1)D(0)

AD
,

D(1)(2)

D
−
B(2)D(1)

BD
=
D(2)(1)

D
−
C(1)D(2)

CD
,

(
σ(1)D

2A

)
(2)

−
(
σ(2)D

2A

)
(1)

+
σ(1)B(2)D

2AB
−
σ(2)C(1)D

2AC

=
σ(2)A(1)D

2A2
−
σ(1)A(2)D

2A2
+
σ(1)D(2)

2A
−
σ(2)D(1)

2A
.

The scalar curvature has the form

S = 2
A(1)(1)

A
+ 2

A(2)(2)

A
− 2

B(0)(0)

B
+ 2

B(2)(2)

B
− 2

C(0)(0)

C
+ 2

C(1)(1)

C

− 2
D(0)(0)

D
+ 2

D(1)(1)

D
+ 2

D(2)(2)

D
+ 2

A(2)B(2)

AB
+ 2

A(1)C(1)

AC

+ 2
A(1)D(1)

AD
+ 2

A(2)D(2)

AD
− 2

B(0)C(0)

BC
− 2

B(0)D(0)

BD

+ 2
B(2)D(2)

BD
− 2

C(0)D(0)

CD
+ 2

C(1)D(1)

CD
−
σ2

(1)D
2

2A2
−
σ2

(2)D
2

2A2
.

C Energy-momentum tensor

For the Lagrangian of the scalar field in the action (1),

Lφ =
1

8π
(ε〈dφ, dφ〉 − 2V (φ)) ,

the energy-momentum tensor components in the coordinate basis {∂t, ∂r, ∂θ, ∂ϕ}
can be calculated by the formula [48]

T (φ)
ij = 2

∂Lφ
∂gij

− Lφgij . (29)
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The direct calculation gives

8πT (φ)
tt = ε(φ2

(0)(A
2 + σ2D2) + (φ2

(1) + φ2
(2))(A

2 − σ2D2)) + 2V (A2 − σ2D2),

8πT (φ)
rr = εB2(φ2

(0) + φ2
(1) − φ2

(2))− 2V B2,

8πT (φ)
θθ = εC2(φ2

(0) − φ2
(1) + φ(2))− 2V C2,

8πT (φ)
ϕϕ = εD2(φ2

(0) − φ2
(1) − φ(2))− 2V D2,

8πT (φ)
tr = 8πT (φ)

rt = 2εABφ(0)φ(1),

8πT (φ)
tθ = 8πT (φ)

θt = 2εACφ(0)φ(2),

8πT (φ)
tϕ = 8πT (φ)

ϕt = −ε(φ2
(0) − φ2

(1) − φ2
(2))σD

2 + 2V σD2,

8πT (φ)
rθ = 8πT (φ)

θr = 2εBCφ(1)φ(2).

Then in the orthonormal basis {ei ⊗ ej}, where ei are defined in Section 2, the
nonzero energy-momentum tensor components are given by

8πT
(φ)
00 = ε(φ2

(0) + φ2
(1) + φ2

(2)) + 2V ,

8πT
(φ)
11 = ε(φ2

(0) + φ2
(1) − φ2

(2))− 2V ,

8πT
(φ)
22 = ε(φ2

(0) − φ2
(1) + φ(2))− 2V ,

8πT
(φ)
33 = ε(φ2

(0) − φ2
(1) − φ(2))− 2V ,

8πT
(φ)
01 = 8πT (φ)

10 = 2εφ(0)φ(1),

8πT
(φ)
02 = 8πT

(φ)
20 = 2εφ(0)φ(2),

8πT
(φ)
12 = 8πT

(φ)
21 = 2εφ(1)φ(2).

Note that the components T
(φ)
02 and T

(φ)
03 vanish due to the symmetry of the tetrad

with respect to tangential directions.
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