
http://mmg.tversu.ru ISSN 2311-1275

MMG Mathematical Modelling
and Geometry

Volume 9, No 3, pp. 1 – 15 (2021) doi:10.26456/mmg/2021-931

Instability of Charge Qubit Outfitted in a Double

Quantum Dot

I. Filikhin1, A. Karoui1, V. Mitic2, T. Zatezalo1, and B. Vlahovic1

1 CREST/Mathematics and Physics Department, North Carolina Central University, Durham,
NC 27707 USA

2 University of Nis, Faculty of Electronic Engineering, Nis, Serbia, and University of Belgrade,
Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia

e-mail: ifilikhin@nccu.edu

Received 12 November 2021. Published 23 November 2021.

Abstract. We study electron tunneling in binary quantum systems as double
quantum dot (DQD) and double quantum well (DQW), considered as two-level
systems. The Schrödinger equation for this system is reduced using single band
kp-effective Hamiltonian, and is solved numerically. We calculate full electron
spectrum En, n = 1, 2 . . . in the bi-confinement potential. The tunneling in DQD
is studied in relation to two factors, a coupling coefficient Wn and an asymmetry
factor ∆n of the potential. The ratio Wn/∆n defines the electron localization in
DQD. The cases of ideal and almost ideal DQD are examined and compared. We
are modeling the effects of environmental influence and fluctuations of electrical
pulse on the coherence of DQD based charge qubit. In particular, we show that the
coupling in the ideal DQD (∆n=0) is unstable for any small fluctuations of ∆n.
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.1 Introduction

Semiconductor solid-state structures were and are promising for building quantum
computers. Since Loss and DiVincenzo’s proposal in Ref. [1] an electron spin qubit
in quantum dots in 1998, the quantum computers have been realized by different
physical principles. One of them is the concept of a spatial isolating single electron
in double quantum dots (DQDs) [2, 3]. The electrically gated quantum dots in
semiconductor heterostructures are attractive for quantum computations because
produce qubits that are simpler manipulability, scalability, and interactively with
classical electronics. Such GaAs quantum dot system with one- and two-qubit de-
vices have been experimentally demonstrated in Ref. [4, 5, 6]. The charge qubit
based on electron localization in a left or right quantum dot of a DQD has been
proposed in Refs. [7, 8, 9] and [10]. The control is achieved by capacitively cou-
pled elements like gates for state initialization and modification, and single-electron
transistor for measuring tunneling current. The theoretical description for Si/SiGe
and graphene DQD based qubits can be found in Refs. [10, 11, 12].

One of the main problems with quantum computing is the qubit error induction.
The quantum states of qubits are indeed sensitive to slight variations of temperature
or tiny vibration, and even single stray photons. These can cause random qubit’s
state change, which gives rise to non-controllable error. The state of neighboring
qubits can also change haphazardly as a QD can pick up signals intended for their
neighbors. The quantum fluctuations or ”charge noise” on a controlled phase gate
may perturb the charge stability in a substantial way [13, 14, 15]. In addition,
symmetry breaking has also a crucial issue in quantum engineering since it causes
coupling of quantum states of QDs [16].

Our goal is to explore the importance of symmetry on the stability of qubits.
To that end, we propose an original approach to describe the electron tunneling
based on electron states modeled using the entire electron confinement spectrum.
The theoretical description for InAs/GaAs heterostructures is based on the effective
potential model proposed in Ref. [17]. Main aspects of symmetry violation and how
each affects the entanglement were studied in Refs. [18, 19, 20, 21, 22, 23, 24]. In
line with this study, we evaluate how small variations of the system geometrical
parameters (QD size and shape, and the DQD topology) and applied fields will
affect the stability of localized/delocalized states in DQD. Other external factors
and conditions that may affect the qubit are not considered in this paper (e.g.,
emission or absorption of photons and phonons). Also, we delineate the limits
at which charge tunneling in ideal DQD becomes unstable with small fluctuations
affecting the whole spectrum of the electron confinement. We assert that ideal DQD
(defined as a system with infinite coherence) systematically becomes unstable under
any small level of fluctuation, a feature that turns a DQD into an extremely sensitive
sensor, as proposed in our paper [18].

In the present paper, we focus on two types of charge qubit effectors: the en-
vironment, which distorts the wave function of an electron in coupled DQD, and
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fluctuations induced by an electrical pulse. Fluctuation risers (for instance, a mo-
lecule that is being detected) change the coupling parameter W and asymmetry ∆
of bi-confinement in DQD. Our numerical modeling is related to analysis for dy-
namics of localized/delocalized states in electron spectrum under DQD geometry
variations. We demonstrate that the ratio W/∆ controls the electron localization
in DQD. The modeling of the variations of the geometry allows us to simulate the
effects of environmental influence and fluctuations of electrical pulse on the cohe-
rence in the DQD based charge qubit. We show that the numerical uncertainty like
0/0 takes place and defines the spectral distribution of localized/delocalized states
in an ideal DQD (∆ =0). Such ideal systems are appropriate for theoretical des-
cription when the mathematical limit ∆→ 0 is possible. In this paper, we consider
realistic binary quantum systems.

This paper is organized as follows. In Section 2 our theoretical model of
InAs/GaAs heterostructures for quantum dots is presented. In Section 3 theoretical
discussion of two-level systems, anti-crossing levels, and electron coupling in double
quantum dots are given. To illustrate the theory, the results of our calculations for
the electron tunneling in DQD induced by an external electric field are presented
in Sec. 4. Section 5 discusses numerical examples of distributions of localized and
delocalized states in the spectrum of a single electron and the influence of numeri-
cal and geometry factors on the tunneling for two cases, the ideal and ”non-ideal”
symmetric in double quantum well. An interpretation of the results is presented
in Sec. 6. We describe the spectral instability of DQD tunneling with the effects
of environmental influence and fluctuations of electrical pulse on the coherence of
DQD based charge qubit. Concluding remarks are provided in Sec. 7.

.2 Model

The electron state in InAs/GaAs QDs is modeled [17] based on the kp-perturbation
single sub-band effective mass approximation. In this case, the eigenvalue problem
is formulated by the Schrödinger equation:(

Ĥkp + Vc(r) + Vsr)
)

Ψ(r) = EΨ(r), (1)

where E is the electron binding energy, Ĥkp is the single band kp-Hamiltonian

operator Ĥkp = −∇ ~2
2m*∇, m* is the electron effective mass, which depends on

the radial position of the electron, thus can be written as m*(r), and Vc(r) is the
band gap potential. The Ben-Daniel-Duke boundary conditions [25] are used at the
interface of the QW material and the substrate. Here, we describe the confinement
model proposed in Ref. [17] for the conduction band. Both potentials Vc(r) and
Vs(r) act within the QWs extent. While the potential Vc is attractive, the potential
Vs is repulsive. The Vs potential reduces the strength of the electron confinement;
it is added to simulate the strain effect in the InAs/GaAs heterostructure.
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The energy is measured so that inside the QD the bulk conduction band offset
is null, i.e., Vc = 0, while it is equal to Vc outside the QD. The band gap potential
for the conduction band is fixed to Vc(r) = 0.594 eV. The bulk effective masses of
InAs and GaAs are m∗1 = 0.024 m0 and m∗2 = 0.067 m0, respectively, where m0 is
the free electron mass.

The magnitude of the effective potential Vs(r) that simulates the strain effect is
adjusted so to reproduce experimental data for the InAs/GaAs quantum dots. The
adjustment depends mainly on the materials composing the heterojunction, and to
a lesser degree, on the QD topology. For example, the magnitude of Vs = 0.21 eV
for the conduction band was discussed in Ref. [17]. This value was adopted as it
reproduces results obtained based on eighth band kp-calculations for InAs/GaAs
QDs [26]. Another value of 0.31 eV for Vs was obtained [27] from experimental data
reported by Lorke et al. [28]. The main advantage of using the effective potential
is the theoretical simplicity, as well as the practical calculations, even in the case
of complex geometry of nano-sized systems.

The model is compatible with existing experimental data for InAs/GaAs hete-
rostructions. For example, in Ref. [29], an interpretation of the C–V data has been
proposed and compared to Lei et al. study [30] given on the basis of oscillator mo-
del for quantum ring (QR). Two sets of geometry parameters for self-assembled QR
were used. The first is from a QR experimental prototype and the second from the
oscillator model matching the model parameters, including the size of the quantum
objects. The additional energy of an electron in a magnetic field was calculated
with both QR geometries. It has been shown that the results of the calculation
with the second geometry fit the C–V experimental data rather well.

.3 DQD as a two-level system

We consider two coupled InAs/GaAs quantum dots as an example of a two-level
system. The confinement of an electron is modeled by one dimensional formalism
which can be found in Ref. [31]. In the ( |0〉 , |1〉) basis of electron state in
separated quantum dot pair, the Hamiltonian (1) takes the matrix form:

H =

(
E1 W
W E2

)
. (2)

At that the wave function of an electron state is written as the superposition
α|0〉 + β|1〉. By diagonalizing the matrix (2), the electron single-particle energies
are calculated [31] as

E+, E− =
(E1 + E2)±

√
(E1 − E2)

2 + 4W 2

2
.

In the absence of the tunnel coupling, i.e., at W = 0, the two dots are independent,
and these energies are simply equal to the lower and the higher of the two energies
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E+, E−, respectively. Here, W > 0 and the coupling W exists due to overlapping
wave functions of the undisturbed state of two separated QDs having the energies
E1, E2. When the energy difference ∆ = |E1 − E2| is large, no tunneling occurs.
The maximal tunneling corresponds to the value ∆ = 0 with energy gap ε. The
energy diagram in Fig. 1 clarifies this setting. For non-identical QDs in DQD, the
main factor for tunneling, which defines the coupled strength W , is the inter-dot
distance. Other factors include the spatial configuration of the wave function, which
depends on generalized quantum numbers, such as the radial quantum number and
orbital momentum. In Ref. [18], it was shown for identical QDs in DQD, that the
uncertainty of type 0/0 for some confinement levels of the electron spectrum takes
place in numerical analysis. That reflects the instability of spectral distribution of
localized/delocalized states of identical QDs relative the small deviations of QDs
geometry and inter-dot distances (see Ref. [18]). For DQD with an asymmetric
geometry, the main factor for tunneling sensitivity is the inter-dot distance. For
small distances, the valueW can be essentially large so to provide a stable tunneling.
Here, we assume similarity of geometry of QDs in DQD. The tunneling stimulated
in DQD having a defect in one of the two QDs, which violate the symmetry, leads
to instability.

Figure 1: The anti-crossing in a two-level system as dependence of the energy of levels,

E+, E−, (solid curves) on the deference ∆ of energies E1, E2, of the corresponding levels

for uncoupled system (red dashed lines).

.4 Electron tunneling in double quantum dots in electric

field

Considering laterally distributed 3D DQD in an perpendicular electric field, we
varied the geometry parameters and values of electric field to replicate the anti-
crossing of levels that has experimentally evidenced. The results of our modeling
are presented in Fig. 2. Here, the Stark effect results in level anti-crossing at
2.5 kV/cm. As shown, the electron is transferred from one QD to another one as
the electric field is changed from zero to a value larger than 2.5 kV/cm. Note, that
the anti-crossing is taking a place for a finite value of ∆, the asymmetry factor due
to non-identical QDs in the DQD.
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Figure 2: Anti-crossing of levels in InAs/GaAs DQD controlled by the electric field. The

diameters of the spherical cap shaped quantum dots QD1 and QD2 in the cut plan are

D1=38 nm and D2=34 nm, respectively. Their height is H=8 nm, while the inter-dot

distance is a=3 nm. The electric field magnitude is denoted F , and the energy of an

electron in the DQD is E (Insets). The square of the wave function is shown for initial,

tunneling and final states.

One must note that the electron localization in the tunneling state depends on
geometry and material parameters of the QDs. The case of a localization described
by ideal relation (1/2 |L〉2 + 1/2 |R〉2), where |L〉 and |R〉 are the electron wave
functions in the “initial” state with no external field (F = 0), is not experimentally
achievable. The (α |L〉2 + β |R〉2) relation is accurate and more realistic. Hence,
the stability of the DQD based qubit depends on ratio α/β. If that ratio is small or
very large (relative to 1), the qubit stability is weak compared to that of a qubit on
ideal DQD, in which case the ratio α/β = 1. Ideally, the QDs must have exactly
the same geometry and material properties for a maximum coherence; such system
is expected to uphold a longer coherence.

.5 Electron tunneling in double quantum wells

We present a numerical model for charge qubit made of InAs/GaAs double quan-
tum dot, allowing a detailed analysis of the electron localization and spectral dis-
tributions of localized/delocalized states. Note that an experimental technique for
registration of the excited states in DQD has been proposed in Ref. [32], the aut-
hors used capacitive charge sensing to single out such states. It was shown in Ref.
[18], that the electron tunneling and spectral distributions of localized/delocalized
states in this binary system are extremely sensitive to the shape symmetry viola-
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tion. We consider electron levels in bi-confinement potential with the energies En,
n = 1, 2, 3 . . . listed in increased order of energy values. The model utilizes QD
coupling parameter, namely Θ, which defines the delocalized (Θ ≈ π

2
) and loca-

lized (Θ ≈0) states of electrons. This parameter depends on ∆n, the difference
between energy levels of the left and right QDs, the considered spectra are those
of separated QDs. The difference can be caused by a shape symmetry violation.
For one-dimensional two-level system, the dependence of the localization of a single
electron in DQD may be presented [31] by a simple function of the ratio Wn/∆n,
where Wn is defined by overlapping the wave functions of separated QDs and ∆n is
the energy difference between n-th electron levels in the spectra of separated QDs:

Θ = arctan(2Wn/∆n), n = 1, 2, 3, . . . . (3)

The dependence of Θ on the dissymmetry ratio is shown in Fig. 3. Here, the
”delocalized state” demonstrates the coupling of the QWs. The wave functions of
each quasi-doublet can be expressed as follows:

Ψ+ = ψ1 + tan (Θ/2)ψ2, Ψ− = − tan (Θ/2)ψ1 + ψ2

with accuracy on normalizing constant. Where the ”unperturbed states” ψ1 and
ψ2 of separated left (index 1) and right (index 2) quantum wells are notated.

Figure 3: The localization

of single electron in DQW:

the relation between the cou-

pling parameter Θ and the ra-

tio 2W/∆ for a confinement

level in DQW is given. We

show the ranges for localized

and delocalized states of the

electron in DQW.

To evaluate the electron localization, we analyze
the single electron average coordinate 〈x〉, calculated
as the matrix elements 〈x〉i = 〈i| x |i〉 for i=1, 2,
(〈x〉ij = 〈i| x |j〉) which are associated, respectively,
with the electron wave functions in QW1 and QW2,
considered separated. The origin of the x-coordinate
is chosen to be the mid-point of the two QWs. The
average coordinate 〈x〉+ and 〈x〉− can be written as:

〈x〉+ = 〈x〉1 + tan2 (Θ/2)〈x〉2 + 2 tan (Θ/2)〈x〉12

and

〈x〉− = tan2(Θ/2) 〈x〉1 + 〈x〉2 − 2 tan (Θ/2)〈x〉12

for corresponding quasi-doublets of the electron
spectrum.

The sensitivity of the parameter Θ to small varia-
tions of ∆ and W is estimated [18] as:

δ(Θ) ∼ − W

∆2 +W 2
δ(∆) +

∆

∆2 +W 2
δ(W ), (4)

where W and ∆ depend on the quantum number, they are selected from Wn and
∆n.
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Below we present a numerical analysis for the electron tunneling in InAs/GaAs
of a typical double quantum well modeled using the above discussed material pa-
rameters, separately with either identical QWs (ideal DQW) or non-identical QWs
but almost ideal DQW. The chosen geometry of the DQW is motivated by expe-
rimental fabrication given in Ref. [33]. This DQW is made basically of ellipsoidal
dots, as presented in Fig. 4. It has been demonstrated in Ref. [18], that small
variations of dot geometry violating the symmetry in DQD disturb essentially the
spectral distribution picture for the tunneling states and electron confinement.

Figure 4: Utilized geometry of el-

lipsoidal DQW: The size of QW1

and QW2 are determined by the

semi-axis R1=55nm, R2=34.75 nm,

and the vertical gap s=1 nm in

asymmetric case. The geometry

is motivated by experimental data

from fabricated double quantum

dot complexes from Ref.[33].

Therefore, the geometry deviation between
the two cases is considered as a key parameter;
the symmetry violation occurs even by minis-
cule geometry difference of the second dot of
the DQW relative to the first. The results of
the calculations are shown in Fig. 5. We found
that the quantum behaviors of the two cases are
fundamentally different. The tunneling spectral
distribution for the asymmetric DQW (see Fig.
5b)) case has a complex character. The electron
delocalization appears to depend on the size of
the bridge connecting the two QWs and the QW
size difference. The localized states are domina-
ting in the electron energy spectrum. Conver-
sely, the spectral distribution for the symme-
tric DQW is simple; all states in the symme-
tric DQW spectrum are delocalized. However,
the limitation of numerical calculations does not
unravel this simplistic case directly.

In Fig. 5 (a), the localized/delocalized states are shown for three different mes-
hes used for solving numerically the Schrödinger equation, needed for the finite
element analysis (FEA) solver. The mesh sizes were chosen to be fine up to full
extent of the available computer memory (32GB) and to the limit of software ca-
pabilities in terms of nodes. The finest mesh (Mesh 3) appeared to provide larger
delocalizing (tunneling states). The energy spectrum of single electron can be sor-
ted according to electron localization probability. As a result, a set of localized
states (in the left QW or right QW) appear either at around 〈x〉 ≈ ±maxj〈x〉j,
or around 〈x〉 ∼ 0 (delocalized states), or in between where states have different
probabilities of being in the left and right QWs. The Mesh3 results (purple-colored
dots) are essentially clustered around 〈x〉 = 0 location. This means that delocalized
states become dominated. The finalized result can be obtained by unlimited decre-
ase of the mesh cell size. Such decrease is not possible to be manage numerically
based on finite difference methods.

The ideal case corresponds to total delocalized spectrum conducive to electron
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confinement states in DQW. It is clear that this situation cannot be experimentally
reproduced. We should note that in the literature (see Ref. [34, 35] for an example)
the theoretical analysis has been limited to the ideal case.

The calculation for asymmetric DQW shown in Fig. 5b) is numerically more
stable, converges more rapidly, and the mesh variations affect mostly the energy of
states located near the threshold of the confinement in the QW. The calculation is
supported with the mesh refinement. The contrast between ideally symmetric DQW
and asymmetric one is the strong dependence of the tunneling on inter-dot (well)
distance. For ideal case, the inter-dot distance is irrelevant as it does not affect the
tunneling. In the case with violated symmetry, the distance plays significant role
as it hinders and even blocks the electron tunneling.

For the numerical modeling of the ellipsoidal DQWs with increasing asymmetry,
we used two sets of geometry parameters. For the first set, QW1 has a semi-axis ra-
tio of R1/R2=55/35 and the QW2 has a ratio of R1/R2=55/34.90; the relative shift
along the horizontal axis is s=1 nm. The second set has the same geometrical para-
meters for QW1, but for QW2 the parameters are chosen to be: R1/R2=55/34.75
and s=-2 nm. The first set is closest to symmetric DQW. The results of calculati-
ons are given in Fig. 6, where in a) the first DQW (the closest to the ideal case)
corresponds to more delocalized states in the spectrum than the second DQW with
larger geometry difference. The energy difference ∆ of the spectra of the separated
QWs for these two variants of QDW geometry is presented in Fig. 6b). One can
conclude that the tunneling in the DQW is a concurrent effect of complex inter-
play between Wn and ∆n, both convey the dissymmetry of the two QDs. However,

Figure 5: (a) The ”ideal” DQW: the tunneling in symmetric ellipsoidal DQW: the sizes of

QW1 and QW2 are equal. The results of calculation for different three meshes are shown

by dots (Fine mesh), open circles (Finer mesh), and open rectangles (Finest mesh). (b)

The tunneling in ”almost ideal” DQW: asymmetric ellipsoidal dots (size of QW1(R1/R2 =

55/35) ) is larger than the size of QW2(R1/R2 = 55/34.75). The QW horizontal axes are

shifted by s=1 nm. Open and close circles show the results related to the mesh variations.
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Figure 6: a) The tunneling in ellipsoidal DQW with two set geometry parameters with

increasing asymmetry of the DQW. The solid circles are related to the first DQW (the

set where R1/R2 = 55/34.75 and s=1 nm for QW2). The open circles are for the second

DQW (the set where R1/R2=55/34.90 and s=-2 nm for QW2). b) The energy asymmetry

∆ of the spectra of the separated QWs for these two variants of QDW geometry.

this numerical experiment demonstrates that small variations ∆n can drastically
affect the tunneling. The ”traces” which are visible in Fig. 6a) can be interpre-
ted as a separation of the values 2W n/∆n according to the spatial symmetries of
corresponding wave functions.

The data presented in Fig. 5 can be also described in terms of regular (ideal
DQW) and chaotic (asymmetric DQW) behavior for tunneling rate in binary quan-
tum well, reported in Ref. [21]. The effect of transformation of double quantum well
geometry from ”regular” one to ”chaotic” on the tunneling rate along the energy
spectrum is demonstrated through this data. The electron spectrum of coupled
QWs is formed by a set of quasi-doublets, according to Eq. (2). Evaluation of
quasi-doublet energy splitting ε is performed using the formula:

ε ∼
∫

ΨsL(x, y)V (x, y)ΨsR(x, y)dxdy,

where ΨsL(x,y) (resp. ΨsR(x,y)) is the normalized wave function of the ”single left”
(resp. ”single right”) QW. The result of the integration depends on overlapping
of the wave functions. The parameters that define this overlapping integral are
the distance between QWs and the spillover of the single wave function outside of
the QW shape region, which depends on the energy of the considered level. The
wave function spread is due to the asymptotic behavior of the confined states. Such
asymptotic behavior is written as: Ψ(x) ∼ Aexp(−b

√
Ec − E x), where x is the

distance from a QW boundary, A and b are constants (at most, they would depend
on an quantum numbers (like to orbital numbers), see regular located ”traces” in
Figs. 5b)-6, Ec is the threshold of the continuous spectrum. It can be shown that
the value of logarithm of the tunneling rate ln(ε) depends on the energy as a linear
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function of
√
E. The tunneling rate ε is correlated to the coupling coefficient Wn.

.6 On the instability of charge qubit based on double quan-

tum dot

Based on our approaches and related findings, we propose a new interpretation for
the spectral instability of DQD tunneling. This new picture is relevant to quantum
computing, as it unravels instability of tunneling in qubits under certain conditions
and proposes solution to overcome (or minimize) the effects of the instability. The
charge qubit can be characterized by a bi-stable potential, which is in line with
published data in Refs. [7, 36, 37, 38, 39, 40, 41] it allows for not only separation of
states based on energy, but also on spatial separation, as well as on localization of
states in different potential wells (i.e., individual/separate QDs). We have shown
in previous sections that the tunneling in a two-level system, exactly like in the
DQD, is extremely sensitive to fluctuations, as described in Eq. (3) and resulted
by a concurrent effect of ∆ and W . Thus, the tunneling in a DQD based qubit
would be affected by any fluctuation of ∆ and variation of W , both lead to loss of
”coherency” of the qubit or ”tunneling state” arising in DQD systems.

The ideal qubit is defined onto a DQD where the probability for an electron to
be in the left QD or in the right is about 1/2 for all possible states of the DQD.
This qubit state corresponds to the limits ∆ → 0 and W > ∆; these occur in a
range of Θ ∼ 0, where the relation tan(Θ/2) ∼ 1 and the probability is close to 1/2.
The limit ∆→ 0 is a mathematical idealization, for which the spectral distribution
of tunneling states in such ideal DQD corresponds to maximal qubit coherence.
Nonetheless, the system remains unstable relatively to small fluctuations. This
conclusion flows down from the results of our calculations, where the numerical
errors simulate the small variations of input parameters of the almost ideal DQD.

More realistic consideration is conceived for finite values of ∆. A simple case
to mention is when ∆ 6= 0 is induced by a geometrical asymmetry in DQD. To
provide large value for the ratio W/∆ and stable tunneling, the value W has to be
large so that W > ∆ is always verified. For the asymmetrical DQD geometry or
asymmetrical bi-confinement, it requests closely located the QDs in DQD.

The DQD based charge qubit is stimulated by an electrical pulse [7] which leads
the tunneling in DQD to occur between the QD energy levels (considering the
spectrum of initially decoupled QDs). For fabricated DQD, the energy difference
∆ of initial state of the spectra is unrecoverable and this state can be a localized
state, which might be caused by, for example, a relatively large inter-dot distance.
This realistic situation is schematically illustrated in Fig. 7; where in a) there is
no tunneling and the separated QDs energy levels are shown. During the pulse,
the bias of the confinement potentials takes a place, as shown in Fig. 7b), which
enables electron tunneling. The form of the fast electric pulse can be found in
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Ref. [7]. The bias led tunneling in the DQD is due to the energy asymmetry
∆′; it is enabled as ∆′ gets smaller than ∆. In this model, we assume that the
pulse acts on the QDs in a non-adiabatic way. We demonstrated that the DQD

Figure 7: The confinement states of the single electron in separated QDs without (a)

and with electrical pulse (b). Here, ∆′ < ∆ due to the bias of the confinement potential

in the electrical field. The fine dashed contour demonstrates non-similarity of the QDs.

state with the energy differences ∆′ = 0 is unstable relative to fluctuations and
cannot be realized practically. We consider the situation, when ∆′ < ∆. In this
case, the above-mentioned concurrent effects of ∆ and W take place. The effect
of electrical field fluctuations during the pulse can give the different causal values
for ∆′. The environmental induced fluctuations are mainly related to W . The
environment media distorts the wave functions and changes the matrix elements.
The complex competition of the two factors ∆ and W demonstrated in Figs. 5 and
6, where results of numerical calculation simulate the interplay between ∆ and W
for different symmetry of wave functions and asymmetry of the bi-confinement (see,
also Eq. (4). We can conclude that this interplay is a source of instability for the
charge qubits.

The effects of fluctuations of the pulse have been formalized in Refs. [42, 43, 44],
where the dephasing of a superconductor qubit was investigated. The wave function
taking into account the dephasing can be represented by the formula:

|0〉+ βeiφ(t)|1〉,

where the pre-factor of the eiϕ(t) phase term can be described by a Gaussian dis-
tribution that expresses the fluctuations. Our analysis is in agreement with this
phenomenological formalization. Additionally, we have to note that chaotic beha-
vior of energy differences in the fluctuations is well described by the Wigner-Dyson
spectral statistics [22, 23] (neighbor statistics). The DQD with realistic asymmetry
is an example of such chaotic system.

.7 Conclusions

We have presented a basic model related to electron tunneling in DQD, an excellent
device for making a charge qubit. The electron spin, if taken into consideration,
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would lead to a more complicated picture of the anti-crossing levels [45, 46]. The
spectral distribution of localized/delocalized states of the almost ideal DQD can be
used for the interpretation of the instability of the qubit under environmental influ-
ence. We showed that the ratio Wn/∆n determinates the coherence in DQD; Wn is
defined by the wave functions overlap for separated QDs and ∆n is energy difference
for the n-th electron level in the spectra of the separated QDs. The charge-based
qubit was modeled numerically using two-dimensional (2D) and 3D binary systems
with the quantum dots having different geometries. The concurrent effects of Wn

and ∆n and their contribution to the confinement spectrum is demonstrated by va-
rying the DQD geometry. We found that the environmental fluctuations affect the
symmetry of bi-confinement in DQD and can result in fluctuations of overlapping
integral Wn and the energy shift ∆n. Also, electric pulse fluctuations can result in
variations of the energy shift ∆n. Thus, the analyzed sources of the charge qubit
instability clarify the usage range of the DQD for such an important application.
The 2D DQD demonstrates high sensitivity to the DQD geometry variations. Our
study clarifies ways for controlling DQD in practice for qubit application.
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