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Abstract. We consider the covariant series in a some normal neighborhood of a
submanifold. Such a neighborhood is a generalization of the normal neighborhood
of a point. We discuss how the coefficients of the covariant Taylor series of an
arbitrary tensor field can be expressed in terms covariant derivatives of the tor-
sion, Riemann curvature and the field under consideration. We also discuss the
algorithm of calculating coefficients of a pseudo-Riemannian metric with respect
to the corresponding metric connection without torsion. As an example, we cal-
culate the covariant expansion of the Schwarzschild metric in the normal tubular
neighborhood of a circular orbit up to the fifth order using the Fermi coordinate
system.
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