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.1 Introduction

It is well-known that the construction a special coordinate frame for a specific
physical system leads, as a rule, to a significant simplification of the corresponding
equations and interpretation of the results. In particular, the Riemann normal
coordinates are widely used in modern theories of gravity, especially for solving
problems with low spacetime symmetry. In 1923, Veblen and Thomas [1], and also
independently Eisenhart [2] in 1926, first pointed out the possibility of expanding
metric components into a Taylor series with tensor coefficients in normal coordinates
centered at a point. In 1969, Petrov [3] showed that the partial derivatives in the
coefficients of a Taylor series can be expressed in terms of the covariant derivatives
of a given tensor and of the curvature tensor at the origin of normal coordinates.
In this work, an explicit form of the first terms in the expansion of an arbitrary
tensor field and, in particular, the spacetime metric was obtained. In the next years,
the geometric and physical meaning of normal coordinates in general relativity was
considered and refined a lot of times [4, 5, 6, 7, 8]. In these works, in particular,
the coefficients for the expansions of the spacetime metric in a Riemann normal
coordinate system were derived.

Another direction in studying the expansions in normal coordinates is the use of
the Fermi coordinate system in which the results obtained for a normal neighbour-
hood centered at a point are generalized to the normal tubular neighborhood of a
smooth curve. In some simple classes of static spacetimes, the form of spacetime
metric in normal coordinates can be constructed exactly. For example, in the (anti)
de-Sitter spacetime, Fermi coordinates in the normal tubular neighborhood for the
timelike geodesic of a static observer are presented in [9]. In general case, there
are a number of approaches to construct Fermi coordinates and find the coefficients
of the covariant series. All expansions obtained in [10, 11, 12] assume that the
based manifold is equipped with a metric. In the article [12], a closed form for the
covariant expansions are found using the early known Metric-integral-theorem by
Florides and Synge [13], so that the coefficients of covariant series are expressed in
special integral formulae. However, the presence of metric on manifold is not neces-
sary condition for existence of covariant series. It is shown in [4] that one can define
covariant series on an arbitrary manifold without metric if an affine connection is
given; moreover, it is possible that the connection has nonzero torsion.

The purpose of this article is, first, to describe in detail the structure of covariant
Taylor expansions in the case when the covariant derivatives determining them are
given at the points of some embedded submanifold. This situation arises not only
when the normal Fermi coordinates are introduced into the tubular neighborhood
of the particle’s world line in general relativity, but in a number of other physical
applications [14, 15, 16, 17, 18]. In our approach, we follow the works [4, 19] where
relatively simple recurrent expressions are presented for calculating the coefficients
of covariant series, an estimate of computational complexity is given, and a com-
putational algorithm is proposed. Second, we give a practically important example
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of covariant expansions in Fermi coordinates.

From the geometrical point of view, expansions in covariant Taylor series are
analytic continuation of tensor fields along geodesics by means of the operator of
finite parallel transport exp(∇X). All the expansion formulae obtained below can
also be obtained by applying this operator to the tensor field and vector fields of the
basis with subsequent expression of the covariant derivatives of the basis vectors in
terms of the covariant derivatives of the curvature and torsion tensors at the initial
point of the geodesic. However, it is preferable to make a direct transformation
of the Taylor series into the corresponding covariant series, since then the issue of
convergence falls away, and the application of the operator exp(∇X) to analytic
tensor fields is justified.

This article is organized as follows. Section 2 contains mathematical prelimina-
ries. In Section 3 we consider covariant Taylor series for arbitrary tensor field and
for the pseudo-Riemanian metric. Section 4 deals with the covariant expansion of
the Schwarzschild spacetime metric in the tubular neighborhood of a circular orbit.
The explicit formulae for some coefficients of the series are presented in Appendix 1.

.2 Concept of a normal neighborhood

and related definitions

In what follows, the (n + m)-dimensional (n > 0, m > 0) manifold H, the linear
connection ∇ on H, interpreted in terms of covariant differentiation, and the m-
dimensional submanifold M ⊂ H together with the inclusion map ı : M → H are
assumed to be analytic. We assume, in addition, that the manifolds H and M are
orientable and that M is connected and parallelizable in the class of analytic vector
fields.

The indices α, β or γ will take values from 1 to n, the indices a, b from n + 1
to n + m, and the indices i, j, k, l, from 1 to n + m irrespective of whether
or not they have subindices. In this article we will use the Einstein notation,
i. e. summation is understood throughout over repeated skew indices. For the
curvature and torsion tensors, covariant derivatives, and connection coefficients we
adopt following standard definitions [20]:

R(Z,X, Y ) = [∇X ,∇Y ]Z −∇[X,Y ]Z , T (X, Y ) = ∇XY −∇YX − [X, Y ],

R(ei, ej, ek) = Rl
ijkel, T (ei, ej) = T kijek,

∇k = ∇ek , ∇iX = Xj
;iej, ∇iej = Γkijek.

Let [ea]
n+m
n+1 be a basis of a module of analytic vector fields on M or, briefly,

a basis on M . We choose completions to bases (e1, . . . , en+m)p, p ∈ M , in the
tangent spaces Tp(H) (identifying each vector e ∈ Tp(M) with Tp(H)) in such a
way that the components of the completing vectors eα in local coordinates on H
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are analytic functions of the local coordinates on M . The possibility of such a
choice is ensured by the paracompactness of the manifold H, which implies the
existence of a Riemannian metric on H and hence a normal bundle over M that is
trivial by virtue of the assumptions made concerning H and M [20]. At each point
p ∈ M , the completing vectors (e1, . . . , en+m)p define a subspace Np(M), where
Tp(H) = Np(M)⊕Tp(M) is the direct sum, and the natural structure of the vector
bundle on the set

NM =
⋃
p∈M

Np(M)

is analytic.

Through every point p ∈ M we describe all possible geodesics in the direction
Np(M). Suppose there exists a connected neighborhood ω of the zero section in
NM and an analytic diffeomorphism ψ : Ω → V ⊂ H such that ψ(X) = c(1),
where X ∈ Np(M), and c is the geodesic with initial conditions (p, X). Then on
V there are defined n coordinate functions: If X = Xαeα, then with the point c(1)
there is associated a set of components Xα. For the vector fields ∂/∂Xα, we adopt
the notation eα, taking into account the identity of their values at each point p ∈M
to the corresponding vectors of the original basis in Np(M).

For m = dimM = 0, all the previous constructions reduce to the choice of a
basis in Tp(H) and the introduction of normal coordinates in the neighborhood of
the point p. For m > 0, we extend the basis vector fields ea defined on M to V by
Lie transport along the vector fields eα. Then everywhere on V

[ei, eα] = 0, i = 1, . . . , n+m, α = 1, . . . , n, (1)

but, generally speaking, [ea, eb] are nonzero vector fields, since the original basis
on M need not be a coordinate one. Thus, on V there is defined a basis [ei]

n+m
1 of

analytic vector fields. For the 1-forms of the dual basis we use the notation ei.

We will define the connected open set V ⊃ M together with the constructed
basis on V a normal neighborhood of the submanifold M . This definition directly
generalizes the concept of a normal neighborhood of a point on a manifold with
linear connection. To test for the existence of a normal neighborhood of a subma-
nifold in specific cases, it is convenient to consider coordinate charts adapted to M
of the form (U, x) on H in which U and U ∩M and the first n coordinates are
equal to zero on U ∩M 6= ∅. The local existence of ψ is obvious, and therefore if
M is contained in the union of the supports of a finite set of such charts, which is
certainly true for compact M , there exists a normal neighborhood V ⊃M .

Specialization of the coordinates or frame of reference usually gives some addi-
tional differential relations. In this case we have the following lemma.
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Lemma 1. The components of the tangent vectors X to the geodesic c on V with

initial conditions

(p,Xp), Xp = (Xαeα)p ∈ NpM

are constant on c, and

Xα = (Xα)p, Xα = 0. (2)

Conversely, if on a curve c such that c(O) = p ∈ M the components of the vectors

tangent to c satisfy the conditions (2), then c is a geodesic.

We extend X to a vector field on V , making the assumption that the conditi-

ons (2) hold everywhere on V . Then at every point of the geodesic c for all natural

µ, ν, all a = n+ 1, ..., n+m, and a smooth tensor field Q on V

∇µ
XX = 0, ∇ν

a∇
µ
XX = 0; (3)

∇2
Xea = R(X,X, ea) +∇X(T (X, ea)), (4)

i. e.
(
ea
)
c

are Jacobi fields along c;

(∇µ
XQ)(#) = (∇µQ)(#;X, . . . , X), (5)

where the number of arguments X on the right is equal to #, and the symbol #

denotes the set of arguments of the tensor field Q.

In addition, at the initial point p = c(0) ∈M ,

∇(α1...∇αµeα) = 0. (6)

The proof of the lemma 1 is discussed in [4].

.3 Covariant Taylor series

3.1 Covariant expansions of an arbitrary tensor field

In a normal neighborhood V ⊃ M for any point q ∈ V there exists a unique
geodesic c that satisfies the conditions of the Lemma 1 and is such that q = c(1).
The position of the point q is fully determined by the set (p, X1, . . . , Xn), where
p = c(0) ∈ M , and Xα are the components of the directing vector Xp ∈ Np(M).
Let X be a vector field defined as in the Lemma 1. By virtue of the relations (5),
the partial derivatives with respect to Xα in the coefficients of the Taylor series
of the function and, in particular, the total contraction of the tensor fields can be
replaced by the corresponding covariant derivatives.

In general case, for an arbitrary smooth tensor field Q we have following result:
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Theorem 1. If the point q ∈ V lies in the region of convergence of the Taylor series

at the point p of the components of an analytic tensor field of type (s, r), then

(Qj1...js
i1...ir

)q =
∑

σ+|µ|+|ν|≥0

1

σ!
Xγ1 . . . Xγσ(Ql1...ls

k1...kr;γ1...γσ
)p u

(µ1)

k1
i1
. . . u

(µr)

kr
ir
v

(ν1)

j1
l1
. . . u

(νs)

js
ls
, (7)

where

σ, µ1, . . . , µr, ν1, . . . , νs > 0, |µ| = µ1 + . . .+ µr, |ν| = ν1 + . . .+ νs

and the elements of the square matrices u
(µ)

, v
(µ)

of order n + m are homogeneous

polynomials of degree µ in the coordinates Xα and are determined for all

α = 1, . . . , n, a = n+ 1, . . . , n+m, i, k = 1, . . . , n+m

by the relations

u
(0)

k
i = v

(0)

k
i = δki ; (8)

u
(1)

k
α =

1

2
Xβ(T kβα)p , u

(1)

k
a = Xβ(Γkβa + T kβa)p ; (9)

u
(µ)

k
i =

1

µ+ ε(i)

µ∑
σ=1

1

(σ − 1)!
Xα1 . . . Xασ(T kα1l ;α2...ασ

)p u
(µ−σ)

l
i+ (10)

+
1

(µ+ ε(i))(µ+ ε(i)− 1)

µ∑
σ=2

1

(σ − 2)!
Xα1 . . . Xασ(Rk

α1α2l ;α3...ασ
)p u

(µ−σ)
l
i ,

µ > 2 , ε(α) = 1 , ε(a) = 0 ;

The proof of the Theorem 1 are represented in [4]. The most difficult step is the
computation of the coefficients of monomials in matrices u

(µ)

k
i if it has been done,

the monomials in (10) can be isolated by well-known methods. The algorithm of
computation of the coefficients of monomials was considered in details in [19].

3.2 Covariant expansions of a pseudo-Riemannian metric

In this section, we will assume that the linear connection on the manifold H is
compatible with the given pseudo-Riemannian metric and has vanishing torsion.
Since the covariant derivative of the pseudo-Riemannian metric in given connection
is equal to zero, we will obtain from the Eqs. (7) the following result:

(gik)q =
∑
µ+ν≥0

(gjl)p u
(µ)

j
i u
(ν)

l
k. (11)
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Firstly, we consider the expansions (11) in a normal neighborhood of the point
p ∈ H; dimH = N , m = 0. For this case, we can readily represent (9) and (10) in
the form

u
(1)

k
i = 0 , u

(µ)

k
i =

∑
σ1+...+στ=µ

h(σ1, . . . , στ) P
(σ1)

k
l1
P
(σ2)

l1
l2
. . . P

(στ )

lτ−1

i , (12)

where µ > 2, σ1, . . . στ > 2, 1 6 τ 6 [µ/2],

P
(σ)

k
l = Xα1 . . . Xασ(Rk

α1α2l;α3...ασ
)p , σ > 2,

h(σ1, . . . , στ ) =
τ∏
r=1

ξ(σr + σr+1 + . . .+ στ )

(σr − 2)!
, ξ(σ) =

1

σ(σ + 1)
.

After substituting (12) in (11) and collecting together the terms of the same order,
we obtain the expansion

(gik)q = (gik)p +
∑

σ1+...+στ
+λ1+...+λρ>2

h(σ1, . . . , στ )h(λ1, . . . , λρ)× (13)

×(gi1k1)p P
(σ1)

i1
i2
P
(σ2)

i2
i3
. . . P

(στ )

iτ
i P

(λ1)

k1
k2
P
(λ2)

k2
k3
. . . P

(λρ)

kρ
k ,

or, in reduced form,

(gik)q = (gik)p+ (14)

+
∞∑
N=2

∑
t1+...+tn=N

(X1)t1 . . . (Xn)tn
∑

σ1+...+στ
+λ1+...+λρ=N

h(σ1, . . . , στ )h(λ1, . . . , λρ)×

×
∑′
{gi1k1Ri1

α1α2i2;α3...ασ1
Ri2
β1β2i3;β3...βσ2

. . . Riτ
γ1γ2i;γ3...γστ

×

×Rk1
δ1δ2k2;δ3...δλ1

Rk2
ε1ε2k3;ε3...ελ2

. . . R
kρ
ζ1ζ2k;ζ3...ζλρ

}p.

In (13) and (14), we have adopted the conventions

σ1, . . . , στ , λ1, . . . , λρ > 2; 1 6 τ + ρ 6 [N/2] ,

and we allow vanishing of one and only one of the numbers τ, ρ ; τ = 0 (ρ = 0)
means the absence of indices σ1, . . . , στ (respectively, λ1, . . . , λρ) in the sum, and
all factors containing at least one of these indices is assumed to be equal to unity;
in
∑′, the summation is over all sets

(α1, . . . , ασ1 , β1, . . . , βσ2 , . . . , γ1, . . . , γστ ,

δ1, . . . , δλ1 , ε1, . . . , ελ2 , . . . , ζ1, . . . , ζλρ)
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of Greek indices (the total number of indices is N), among which t1 indices are
equal to 1, t2 indices are equal to 2,. . . , tn indices are equal to n.

Secondly, we deals with important special case of covariant expansions of the
components of a pseudo-Riemannian metric in a normal neighborhood of a hyper-
surface, which corresponds to dimH = 1+m, dimM = m, n = 1, the relations (11)
can be reduced to the form

(g11)q = (g11)p, (g1a)q = (g1a)p +X1(g1l)pS
(1)

l
a, (15)

(gab)q = (gab)p +
∞∑
N=1

(X1)N
∑

σ1+...+στ
+λ1+...+λρ=N

g(σ1, . . . , στ )g(λ1, . . . , λρ)× (16)

×(gik)p S
(σ1)

i
a1
S
(σ2)

a1
a2
. . . S

(στ )

aτ−1
aτ S

(σ0)

aτ
a S

(λ1)

k
b1
S
(λ2)

b1
b2
. . . S

(λρ)

bρ−1

bρ
S
(λ0)

bρ
b ,

where
σ0, λ0 = 0 , 1; σ1, . . . , στ , λ1, . . . , λρ ≥ 2 ; 1 ≤ τ + ρ ≤ [N/2],

and we allow the vanishing of both the numbers τ, ρ; τ = 0 (ρ = 0) means the
absence of the indices σ1, . . . , στ (respectively, λ1, . . . , λρ) in the sum, and all factors
containing at least one of these indices are assumed equal to unity;

S
(0)

i
a = δia , S

(1)

i
a = (Γi1a)p ;

S
(σ)

i
a = (Ri

11a ; 1,...,1)p (σ indices 1) , σ ≥ 2;

g(σ1, . . . , στ ) =
τ∏
r=1

η(σr + σr+1 + . . .+ στ )

(σr − 2)!
, η(σ) =

1

σ(σ + 1)
.

It is readily seen that the expansions (15) and (16) contain not only the connection
coefficients Γi1a but also m independent components of the Riemann tensor and
their covariant derivatives along the congruence of geodesics transversal to the
hypersurface, taken at the points of this hypersurface.

.4 Covariant expansions of the Schwarzschild metric

in the normal tubular neighborhood of a circular orbit

In this section we consider in details how to compute the components of covariant
series for the metric of the Schwarzschild spacetime in the normal neighborhood of
a circle orbit.
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Let us consider the metric of a spherically symmetric spacetime

ds2 = A2dt2 −B2dr2 − C2dθ2 − C2 sin2 θdϕ2, (17)

where functions A, B, C depend on only coordinates t and r. It is convenient
to use an orthonormal basis of vector fields associated with the metric (17) and
corresponding dual basis of 1-forms to study geodesics. In this vector basis metric
components become (gij) = diag{1,−1,−1,−1}. These bases are 1

ε0 =
1

A
∂t, ε1 =

1

B
∂r, ε2 =

1

C
∂θ, ε3 =

1

C sin θ
∂ϕ, (18)

and
ε0 = Adt , ε1 = B dr , ε2 = C dθ , ε3 = C sin θ dϕ. (19)

Furthermore, from here some convenient notation will be used: the directional de-
rivatives along the basis vector fields (18) will be denoted by the corresponding
subscript indices placed in parentheses (that can be omitted in practical calculati-
ons). For example,

ε0φ ≡ φ(0) =
1

A
∂tφ.

Using the Cartan method we can find the forms of connection in the bases (18)
and (19). The nonzero forms of connection are listed below:

ω0
1 =

A(1)

A
ε0 +

B(0)

B
ε1, ω0

2 =
C(0)

C
ε2, ω0

3 =
C(0)

C
ε3, ω0

α = ωα0 ,

ω1
2 = −

C(1)

C
ε2 , ω1

3 = −
C(1)

C
ε3 , ω2

3 = −cot θ

C
ε3 , ωαβ = −ωβα ,

Note that in the static case (when the metric functions A, B, C depend on
only radial coordinate r) all directional derivatives of the metric functions along ε0
vanish. In particular, it is true for the Schwarzschild spacetime.

The geodesic equation ∇UU = 0 in the basis (19) gives the system of four
equations

dU i

ds
+ ωij(U)U j = 0 (20)

for the components of the 4-velocity

U = U0ε0 + U1ε1 + U2ε2 + U3ε3,

where

U0 = A
dt

ds
, U1 = B

dr

ds
, U2 = C

dθ

ds
, U3 = C sin θ

dϕ

ds
.

1In this section we will use traditional numeration adopted in General Relativity, i. e. indices

will run from 0 to 3.
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Without loss of generality we can assume that the geodesics under consideration
satisfies the following initial conditions:

U2 = 0 , θ = π/2 .

Then geodesic equation (20) for the U2-component

dU2

ds
+
C(0)

C
U2U0 +

C(1)

C
U2U1 − cot θ

C
U3U3 = 0 ,

implies that the geodesic is are entirely in the equatorial plane. The other three
equations take the form

dU0

ds
+

A(1)

A
U0U1 +

B(0)

B
U1U1 +

C(0)

C
U3U3 = 0 , (21)

dU1

ds
+

A(1)

A
U0U0 +

B(0)

B
U0U1 −

C(1)

C
U3U3 = 0 , (22)

dU3

ds
+

C(0)

C
U0U3 +

C(1)

C
U1U3 = 0 . (23)

From (21)–(23) we obtain the first integral [17](
U0
)2 − (U1

)2 − (U3
)2

= k , k = −1 , 0 , 1, (24)

where the values k = 1, k = 0 and k = −1 correspond to timelike, null and spacelike
geodesics respectively. We restrict our attention on timelike orbits.

Now we turn to consideration of circle orbits. Since for any point of a circle orbit
the radial coordinate r is equal to constant, then U1 = 0, U0 and U3 are constants.
The values of U0 and U3 can be found from Eqs. (22) and (24). Assuming k = 1
and U1 = 0 we obtain

(
U0
)2

=

C ′

C

C ′

C
− A′

A

=

A

C

A

C
− dA

dC

,
(
U3
)2

=

A′

A

C ′

C
− A′

A

=

dA

dC

A

C
− dA

dC

.

(25)

Now we describe in details how to receive all terms of the covariant series for the
Schwarzschild spacetime metric up to N-th order. Firstly, to solve this task we must
specify the Fermi basis on the orbit. From geometrical point of view the circle orbit
is one-dimensional submanifold embedded in four-dimensional spacetime, and the
values of dimensions m and n introduced in Sec. 2 are equal to 1 and 3, respectively.
So, a unit vector that tangent to the orbit must be included in the Fermi basis.
This vector can be written in the form

e0 = U0ε0 + U3ε3, (26)
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e1

e2

e3

e0

X

p q

H

M

γ
X
(t)

Figure 1: A scheme for covariant expansions along a curve M which is conside-

red as a one-dimensional submanifold in H, dimM = 1, where H is spacetime

(four-dimensional manifold). Vector e0 is tangent to M , and NpM =
〈
e1, e2, e3

〉
,

dimNpM = 3. Here γ
X

is a geodesic passing through a point p ∈M with the tan-

gent vector X ∈ NpM , γ
X
(1) = q, so that X = X1e1+X2e2+X3e3 and (X1, X2, X3)

are the nornal coordinates (Fermi coordinates) of the point q ∈ H. In Sec. 4, the

basis {e0, e1, e2, e3} ⊂ TpH is chosen to be orthonormal.

where U0 and U3 can be found from (25). The other three vectors we define as

e1 = ε1, e2 = ε2, e3 = U3ε0 + U0ε3. (27)

It is easy to verify that the basis (26)–(27) is orthonormal, as well as the basis (18).

The next step is to calculate the matrices u
(µ)

up to N-th order. This step is

the most difficult in the whole problem, because it requires to implement a large
number of calculations and arithmetical operations.

Let q is a point in the tubular neighborhood of the orbit. It is shown in Sec. 2
that q can be determined unambiguously by a set (p,X1, X2, X3), where p is a
point of the orbit connected with q by a unique geodesic, and X1, X2 and X3 are
coordinates of the vector X ∈ NpM (M is the circle orbit under consideration) that
is tangent to the geodesic in the basis (27) (see Fig. 1).

It is necessary to note that in this context the Greek indices, α, β and γ, in
the Eqs. (7) – (11) run the values from 1 to 3, and the Latin ones, a and b, take
the value 0.
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As we can see from the Eq. (8), the matrix u
(0)

is identity. Now we deal with the

matrix u
(1)

. The first equation of the formula (9) implies that the last three columns

of u
(1)

contain only zeros because of vanishing torsion. To receive the elements u
(1)

i
0,

it is required to calculate the covariant derivatives ∇1e0, ∇2e0, ∇3e0. They are

∇1e0 = ∇2e0 = 0, ∇3e0 = U0U3

(
A(1)

A
−
C(1)

C

)
e1.

So, there exists a unique nonzero component of the connection (Γiα0)p in the Eqs.
(9)–(10): (

Γ1
30

)
p

= U0U3

(
A(1)

A
−
C(1)

C

)
, u

(1)

1
0 = Γ1

30X
3.

In particular, for the Schwarzschild spacetime A2 = (r − 2m)/r, B2 = r/(r − 2m),
C = r and we have u

(1)

1
0 = −X3/r3/2 and the other elements of the matrix under

consideration are zeros.

Now we consider how to compute the elements of the matrix u
(2)

. It is implies

from the Eq. (10) that these elements are expressed via the curvature components.
The independent nonzero curvature components of the Schwarzschild spacetime
taken in an arbitrary point of the orbit have the form1:

(R0
303)p = (R1

212)p = (R2
121)p = (R3

003)p =
1

r3
;

(R0
113)p = (R0

232)p = (R1
013)p = (R1

310)p =

= (R2
032)p = (R2

302)p = (R3
101)p = (R3

220)p =
3
√
r − 2

(r − 3)r3
;

(R0
202)p = (R1

313)p = (R2
002)p = (R3

131)p =
1

(r − 3)r2
;

(R0
110)p = (R1

010)p = (R2
332)p = (R3

223)p =
2r − 3

(r − 3)r3
;

(Ri
jkl)p = −(Ri

jlk)p.

Further, for example, let us compute the element u
(2)

0
0. Taking into account

1Hereinafter we assume that the parameter m (the Schwarzschild mass) is equal to unity.
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vanishing torsion of the spacetime we obtain from the Eq. (10):

u
(2)

0
0 =

1

(2 + ε(0))(2 + ε(0)− 1)
Xα1Xα2(R0

α1α2l
)p u

(0)

l
0 =

1

2
Xα1Xα2(R0

α1α2l
)pδ

l
0

=
1

2

(
(X1)2R0

110 +X1X2R0
120 +X2X1R0

210 +X1X3R0
130 +X3X1R0

310

+(X2)2R0
220 +X2X3R0

230 +X3X2R0
320 + (X3)2R0

330

)
=

(2r − 3)(X1)2

2(r − 3)r3
− (X2)2

2(r − 3)r2
− (X3)2

2r3
.

The other elements can be received by the same way.

The elements of the matrices u
(µ)

(µ ≥ 3) can be also computed by applying the

formula (10), but it is required to calculate all covariant derivatives of the curvature
up to (µ − 2)-th order previously. Instead of the recurrent formula (10), we also
can use explicit expressions from the article [19].

The final step in solving the problem is to apply the formula (11) and then to
collect similar terms. Due to this algorithm we have found the covariant exceptions
of the Schwarzschild metric up to 5-th order. The results are presented in the
Appendix 1.

.5 Conclusions

In this article we have described the concept of a normal neighborhood of a sub-
manifold and discuss how to compute covariant Taylor series. It is shown that
covariant series can be defined on manifolds with linear connection and, moreover,
with nonzero torsion.

As for practical application of the series, this tool can be used in constructing
and studying some realistic models of the motion of a particle in General Relativity.
In particular, it can be useful in modeling of an interaction of two gravitational
configurations.

We can conclude that the problem of computation of a covariant expansion is
too difficult in order to implement it by hand even for sufficiently small orders of an
expansion and dimension of the manifold under consideration. Thus, the problem
arises of constructing efficient algorithms and their computer implementation. Now
there exists an algorithm with exponential computational complexity [19]. It is
possible that the solution of the problem will be realized on quantum computers in
the near future.
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Appendix

.1 Coefficients of the series for Sec. 4

Here we write out the coefficients up to 5-th order in the basis (26) – (27). They
obtain using the algorithm [19] implemented in the computer algebra system Maple.

g00 = 1 +
(2 r − 3) (X1)2

(r − 3) r3
− (X2)2

(r − 3) r2
− 2

(X3)2

r3
− (2 r − 3)

√
r − 2(X1)3

r9/2 (r − 3)

+
(3 r2 − 8 r + 4)X1 (X2)2

r9/2 (r − 3)
√
r − 2

+3
(r2 − 3 r + 2)X1 (X3)2

r9/2 (r − 3)
√
r − 2

+
1

12

(24 r2 − 74 r + 45) (X1)4

r6 (r − 3)

− 1

3

(18 r2 − 50 r + 21) (X1)2(X2)2

r6 (r − 3)
− 1

6

(36 r3 − 220 r2 + 441 r − 297) (X1)2(X3)2

r6 (r − 3)2

+
1

12

(9 r2 − 20 r − 12) (X2)4

r6 (r − 3)
+

1

2

(11 r + 6− 14 r2 + 3 r3) (X2)2(X3)2

r6 (r − 3)2

+
1

12

(−15 + 9 r2 − 10 r) (X3)4

r6 (r − 3)
− 1

5

(10 r2 − 28 r + 9)
√
r − 2(X1)5

r15/2 (r − 3)

+
1

20

(200 r3 − 963 r2 + 1278 r − 304) (X1)3(X2)2

r15/2
√
r − 2 (r − 3)

+
1

20

(−1617 r3 + 4920 r2 − 6724 r + 3504 + 200 r4) (X1)3(X3)2

r15/2 (r − 3)2
√
r − 2

− 1

20

(75 r3 − 330 r2 + 292 r + 136)X1 (X2)4

r15/2
√
r − 2 (r − 3)

− 3

20

(813 r2 − 688 r − 352 r3 + 140 + 50 r4)X1 (X2)2(X3)2

r15/2 (r − 3)2
√
r − 2

− 3

20

(25 r3 − 117 r2 + 140 r − 12)
√
r − 2X1 (X3)4

r15/2 (r − 3)2
+O(X6);
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g01 =
X3

r3/2
− 2

√
r − 2X1X3

(r − 3) r3
+

9

4

(r − 2) (X1)2X3

r9/2 (r − 3)
− 1

12

(13 r − 30) (X2)2X3

r9/2 (r − 3)

− 1

12

(13 r − 18) (X3)3

r9/2 (r − 3)
− 1

5

(12 r − 25)
√
r − 2(X1)3X3

r6 (r − 3)

+
1

10

√
r − 2 (31 r − 63)X1 (X2)2X3

r6 (r − 3)
+

1

10

(−193 r2 + 388 r − 252 + 31 r3)X1 (X3)3

r6 (r − 3)2
√
r − 2

=
1

4

(10 r − 23) (r − 2) (X1)4X3

r15/2 (r − 3)
− 1

360

(2241 r2 − 9040 r + 9186) (X1)2(X2)2X3

r15/2 (r − 3)

− 1

360

(2241 r3 − 13990 r2 + 28542 r − 19008) (X1)2(X3)3

r15/2 (r − 3)2

+
1

360

(279 r2 − 1094 r + 1056) (X2)4X3

r15/2 (r − 3)

+
1

360

(558 r3 − 3313 r2 + 6000 r − 3114) (X2)2(X3)3

r15/2 (r − 3)2

+
1

360

(279 r3 − 1382 r2 + 1932 r − 612) (X3)5

r15/2 (r − 3)2
+O(X6);

g02 = 2

√
r−2X2X3

(r−3)r3
− 1

6

25r−48)X1X2X3

r9/2(r−3)
− 1

5

(7 r − 16)
√
r − 2(X2)3X3

r6(r−3)

+
1

10

√
r−2(71r−155)(X1)2X2X3

r6(r−3)
− 1

10

(14r2−59r+39)
√
r−2X2(X3)3

r6(r−3)2

− 1

180

(1917r2 − 8785r + 9867)(X1)3X2X3

r15/2(r − 3)
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+
1

180

(1098 r2 − 4913 r + 5442)X1 (X2)3X3

r15/2 (r − 3)

+
1

180

(1098 r3 − 7118 r2 + 13863 r − 8073)X1X2 (X3)3

r15/2 (r − 3)2
+O(X6);

g03 = 2

√
r − 2(X1)2

(r − 3) r3
− 2

√
r − 2(X2)2

(r − 3) r3
− 9

4

(r − 2) (X1)3

r9/2 (r − 3)
+

21

4

(r − 2)X1 (X2)2

r9/2 (r − 3)

+
1

12

(13 r − 18)X1 (X3)2

r9/2 (r − 3)
+

1

5

(12 r − 25)
√
r − 2(X1)4

r6 (r − 3)

− 1

5

√
r − 2 (51 r − 109) (X1)2(X2)2

r6 (r − 3)

− 1

10

(−193 r2 + 388 r − 252 + 31 r3) (X1)2(X3)2

r6 (r − 3)2
√
r − 2

+
1

5

(7 r − 16)
√
r − 2(X2)4

r6 (r − 3)

+
1

10

(14 r2 − 59 r + 39)
√
r − 2(X2)2(X3)2

r6 (r − 3)2
− 1

4

(10 r − 23) (r − 2) (X1)5

r15/2 (r − 3)

+
1

24

(405 r2 − 1774 r + 1928) (X1)3(X2)2

r15/2 (r − 3)

+
1

360

(2241 r3 − 13990 r2 + 28542 r − 19008) (X1)3(X3)2

r15/2 (r − 3)2

− 1

24

(165 r2 − 728 r + 796)X1 (X2)4

r15/2 (r − 3)

− 1

360

(2754 r3 − 17549 r2 + 33726 r − 19260)X1 (X2)2(X3)2

r15/2 (r − 3)2

− 1

360

(279 r3 − 1382 r2 + 1932 r − 612)X1 (X3)4

r15/2 (r − 3)2
+O(X6);
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g11 = −1 +
1

3

(X2)2

r3
+

1

3

(X3)2

(r − 3) r2
− 1

2

√
r − 2X1 (X2)2

r9/2
− 1

2

√
r − 2X1 (X3)2

(r − 3) r7/2

+
1

180

(−251 + 108 r) (X1)2(X2)2

r6
+

1

180

(108 r2 − 251 r + 48) (X1)2(X3)2

r6 (r − 3)

− 1

180

(27 r − 46) (X2)4

r6
− 1

180

(−81 + 54 r2 − 92 r) (X2)2(X3)2

r6 (r − 3)

− 1

180

(27 r3 − 46 r2 − 189 r + 324) (X3)4

r6 (r − 3)2
− 1

15

√
r − 2 (−29 + 10 r) (X1)3(X2)2

r15/2

− 1

15

(10 r2 − 29 r + 12)
√
r − 2(X1)3(X3)2

r15/2 (r − 3)
+

1

2

(r − 2)3/2X1 (X2)4

r15/2

+
(r3 − 4 r2 + 3 r + 2)X1 (X2)2(X3)2

r15/2
√
r − 2 (r − 3)

+
1

10

(−10 r2 + 116 r − 112 + 5 r4 − 20 r3)X1 (X3)4

r15/2 (r − 3)2
√
r − 2

+O(X6);

g12 = −1

3

X1X2

r3
+

1

2

√
r − 2(X1)2X2

r9/2
+

1

2

√
r − 2X2 (X3)2

r9/2 (r − 3)

− 1

180

(−251 + 108 r) (X1)3X2

r6
+

1

180

(27 r − 46)X1 (X2)3

r6

+
1

180

(27 r2 − 316 r + 489)X1X2 (X3)2

r6 (r − 3)
+

1

15

√
r − 2 (−29 + 10 r) (X1)4X2

r15/2

− 1

2

(r − 2)3/2 (X1)2(X2)3

r15/2
− 1

10

(5 r3 − 50 r2 + 137 r − 114) (X1)2X2 (X3)2

r15/2
√
r − 2 (r − 3)

− 1

2

(r2 − 4 r + 4) (X2)3(X3)2

r15/2
√
r − 2 (r − 3)

− 1

10

(−30 r2 + 57 r − 34 + 5 r3)X2 (X3)4

r15/2 (r − 3)2
√
r − 2

+O(X6);
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g13 = −1

3

X1X3

(r − 3) r2
+

1

2

√
r − 2(X1)2X3

(r − 3) r7/2
− 1

2

√
r − 2(X2)2X3

r9/2 (r − 3)

− 1

180

(108 r2 − 251 r + 48) (X1)3X3

r6 (r − 3)
+

1

180

(27 r2 + 224 r − 570)X1 (X2)2X3

r6 (r − 3)

+
1

180

(27 r3 − 46 r2 − 189 r + 324)X1 (X3)3

r6 (r − 3)2

+
1

15

(10 r2 − 29 r + 12)
√
r − 2(X1)4X3

r15/2 (r − 3)

− 1

10

(5 r3 + 10 r2 − 107 r + 134) (X1)2(X2)2X3

r15/2
√
r − 2 (r − 3)

− 1

10

(−10 r2 + 116 r − 112 + 5 r4 − 20 r3) (X1)2(X3)3

r15/2 (r − 3)2
√
r − 2

+
1

2

(r2 − 4 r + 4) (X2)4X3

r15/2
√
r − 2 (r − 3)

+
1

10

(−30 r2 + 57 r − 34 + 5 r3) (X2)2(X3)3

r15/2 (r − 3)2
√
r − 2

+O(X6);

g22 = −1 +
1

3

(X1)2

r3
− 1

3

(X3)2 (2 r − 3)

(r − 3) r3
− 1

2

√
r − 2(X1)3

r9/2

+
1

2

√
r − 2 (4 r − 7)X1 (X3)2

r9/2 (r − 3)
+

1

180

(−251 + 108 r) (X1)4

r6

− 1

180

(27 r − 46) (X1)2(X2)2

r6
− 1

180

(2910 + 729 r2 − 2948 r) (X1)2(X3)2

r6 (r − 3)

+
1

180

(108 r2 − 383 r + 342) (X2)2(X3)2

r6 (r − 3)
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+
1

180

(108 r3 − 653 r2 + 1176 r − 639) (X3)4

r6 (r − 3)2
− 1

15

√
r − 2 (−29 + 10 r) (X1)5

r15/2

+
1

2

(r − 2)3/2 (X1)3(X2)2

r15/2
+

1

30

(−1944 + 2800 r − 1324 r2 + 205 r3) (X1)3(X3)2

r15/2
√
r − 2 (r − 3)

− 1

10

(30 r3 − 181 r2 + 364 r − 244)X1 (X2)2(X3)2

r15/2
√
r − 2 (r − 3)

− 1

10

(428 + 30 r4 − 251 r3 − 946 r + 748 r2)X1 (X3)4

r15/2 (r − 3)2
√
r − 2

+O(X6);

g23 =
1

3

X2X3 (2 r − 3)

(r − 3) r3
− (2 r2 − 7 r + 6)X1X2X3

r9/2 (r − 3)
√
r − 2

+
1

180

(702 r2 − 2632 r + 2421) (X1)2X2X3

r6 (r − 3)
− 1

180

(108 r2 − 383 r + 342) (X2)3X3

r6 (r − 3)

− 1

180

(108 r3 − 653 r2 + 1176 r − 639)X2 (X3)3

r6 (r − 3)2

− 1

30

(190 r3 − 1174 r2 + 2389 r − 1602) (X1)3X2X3

r15/2
√
r − 2 (r − 3)

+
1

5

(15 r3 − 88 r2 + 172 r − 112)X1 (X2)3X3

r15/2
√
r − 2 (r − 3)

+
1

10

(394 + 30 r4 − 246 r3 + 718 r2 − 889 r)X1X2 (X3)3

r15/2 (r − 3)2
√
r − 2

+O(X6);
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g33 = −1 +
1

3

(X1)2

(r − 3) r2
− 1

3

(X2)2 (2 r − 3)

(r − 3) r3
− 1

2

√
r − 2(X1)3

(r − 3) r7/2

+
1

2

(4 r2 − 13 r + 10)X1 (X2)2

r9/2 (r − 3)
√
r − 2

+
1

180

(108 r2 − 251 r + 48) (X1)4

r6 (r − 3)

− 1

180

(729 r2 − 2408 r + 1851) (X1)2(X2)2

r6 (r − 3)

− 1

180

(27 r3 − 46 r2 − 189 r + 324) (X1)2(X3)2

r6 (r − 3)2
+

1

180

(108 r2 − 383 r + 342) (X2)4

r6 (r − 3)

+
1

180

(108 r3 − 653 r2 + 1176 r − 639) (X2)2(X3)2

r6 (r − 3)2

− 1

15

(10 r2 − 29 r + 12)
√
r − 2(X1)5

r15/2 (r − 3)

+
1

30

(205 r3 − 1144 r2 + 2068 r − 1200) (X1)3(X2)2

r15/2
√
r − 2 (r − 3)

+
1

10

(−10 r2 + 116 r − 112 + 5 r4 − 20 r3) (X1)3(X3)2

r15/2 (r − 3)2
√
r − 2

− 3

10

(10 r3 − 57 r2 + 108 r − 68)X1 (X2)4

r15/2
√
r − 2 (r − 3)

− 1

10

(−832 r + 360 + 688 r2 − 241 r3 + 30 r4)X1 (X2)2(X3)2

r15/2 (r − 3)2
√
r − 2

+O(X6).
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