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Abstract. This article deals with quantum computations in the Pauli basis whose
elements are usually identified with the Pauli strings. This approach allows us to
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.1 Introduction

The theory of quantum computing remains in the field of great attention over the
past two decades. Various types and subtypes of quantum computations are adap-
ted for different technologies and hardware architectures, but their mathematical
structures are constructed using the same basic notions of Hilbert space, quantum
observable, unitary operator, and quantum state. In this article, we consider inte-
racting composite quantum system consisting of n identical two-level subsystems
(qubits), so that the dimension of the corresponding Hilbert space is 2n. A pure
state quantum computation with a number of gates that polynomially depends on
the number of qubits can be efficiently simulated classically. Since a universal quan-
tum computer demonstrating quantum supremacy should have a large number of
qubits, say n ≥ 1000, the number of basis states is 2n > 10300. Quantum computers
with small number of qubits (n ∼ 100) that will be available in the near term have
to employed together with a classical computer. In both cases multiqubit quantum
computations are very sensitive to the choice of a computational basis [1, 2, 3].

There are two general possibilities for choosing a basis, and which one is more
efficient depends on both a given algorithm and a particular type of quantum com-
puter. First, we can use a standard orthonormal basis in the based Hilbert space
and then construct a suitable basis in the algebra of linear operators. However,
this approach turns out to be inconvenient and unnatural in the consideration of
problems related to mixed states, graph states [4], error corrections [3, 5, 6], tensor
networks [7, 8, 9] and more generally, to all issues where measurements are not
projective [10, 11, 12]. The second possibility deals directly with a basis in the
operator algebra, and in this case the basis elements usually cannot be separated
into the tensor product of some ket and bra vectors; the Pauli basis is considered
to be the best choice because it is Hermitian, orthonormal (with respect to the
Hilbert-Schmidt inner product), and makes up an orthonormal basis in the Lie al-
gebra of the corresponding unitary group. The Clifford group, which has numerous
applications in quantum computations, is most simply described in terms of the
Pauli basis [10, 14].

The main purpose of this article is to give a systematic algebraic overview of
multiqubit systems in the Pauli basis. The article is organized as follows. Section 2
contains some necessary mathematical preliminaries. In Section 3 we give a short
description of quantum states for a n-qubit quantum system in the Pauli basis.
Section 4 is devoted to studying some computational properties of Pauli strings. In
Section 5 we consider a computational algorithms intended for transition from the
standard basis to the Pauli basis.

Throughout this article, we use the natural units with ~ = c = 1. For the sake
of readability, some notations have been made context sensitive: lowercase Latin
letters in binary strings (e.g., in symbols of bra and ket) take the values 0 and 1,
while in Pauli strings and indices they run from 0 to 3.
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.2 Main features of the Pauli basis

We will consider a quantum system of n distinguishable qubits, where a qubit is
associated with a two-dimensional Hilbert space H and its dual (Hermitian adjoint)
space H†. Let Hn = H⊗n and H†n =

(
H†
)⊗n be the Hilbert space of the system and

its dual, respectively, and let L(Hn) = Hn ⊗ H†n be the space of linear operators
acting on H and H† by the left and right contractions respectively. Then

dimCHn = dimCH†n = 2n, dimCL(Hn) = 22n.

We will also assume that the space L(Hn) is equipped with the Hilbert-Schmidt
inner product,

〈Â, B̂〉 = tr(Â†B̂), Â, B̂ ∈ L(Hn), (1)

which is the natural extension of the inner product in Hn. The real linear space of
Hermitian operators is denoted below as H(Hn).

Let {|0〉, |1〉} be an orthonormal basis in some one-qubit space H. The unit
matrix and the Pauli matrices,

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

define the four Pauli operators

σ̂0 = |0〉〈0|+ |1〉〈1|, σ̂1 = |0〉〈1|+ |1〉〈0|,

σ̂2 = −i|0〉〈1|+ i|1〉〈0|, σ̂3 = |0〉〈0| − |1〉〈1|,
which are Hermitian and unitary at the same time, and which form a basis in L(H).
The inverse transformation is given by

|0〉〈0| = σ̂0 + σ̂3
2

, |0〉〈1| = σ̂1 + iσ̂2
2

, |1〉〈0| = σ̂1 − iσ̂2
2

, |1〉〈1| = σ̂0 − σ̂3
2

.

Recall that for k, l,m ∈ {1, 2, 3} we have tr σ̂k = 0, σ̂2
k = σ̂0, and

σ̂kσ̂l = −σ̂lσ̂k, σ̂kσ̂l = i sign(π)σ̂m, (klm) = π(123), (2)

where π(123) is a permutation of {1, 2, 3}.
There is a standard1 binary basis in Hn generated by the orthonormal bases

{|0〉, |1〉} in the corresponding one-qubit spaces. Mathematically, the position in
the tensor product distinguishes qubits from each other. Therefore, for a fixed n,
it is convenient to write an element of this basis and the corresponding element of
the dual basis in the form

|k〉 = |k1 . . . kn〉 = |k1〉 ⊗ . . .⊗ |kn〉, 〈k| = 〈k1 . . . kn| = 〈k1| ⊗ . . .⊗ 〈kn|,
1We do not use the usual term ”computational” because it can lead to confusion. The Pauli

basis and the standard basis are computational in the same sense.
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regarding the strings k1 . . . kn (k1, . . . , kn ∈ {0, 1}) as a binary number and denoting
it by its decimal representation k. For example, |101〉 = |5〉 and |00110〉 = |6〉

In the standard basis,

|u〉 =
2n−1∑
k=0

uk|k〉, Â =
2n−1∑
k,l=0

akl|k〉〈l|,

where |u〉 ∈ Hn and Â ∈ L(Hn).

The Pauli basis P (Hn) in L(Hn) is defined by{
σ̂k1...kn

}
k1,...,kn ∈{0,1,2,3}

, σ̂k1...kn = σ̂k1 ⊗ . . .⊗ σ̂kn , (3)

where σ̂0...0 is the identity operator. It is obvious that the P (Hn) consists of 4n

elements. We will use compact notations like

σ̂K = σ̂k1...kn ,

denoting the Pauli string k1 . . . kn, where k1, . . . , kn ∈ {0, 1, 2, 3}, by the correspon-
ding capital letter K. In doing so, we will often consider K as a number, that is, as
the decimal representation of the string; it is clear that 0 6 K 6 4n− 1. Note that
the Pauli string K and the element σ̂K of the Pauli basis are completely determined
by each other and, consequently, can be identified. For example, elements of the
standard basis are expressed in terms of the Pauli basis in Appendix A1 on page 12.

It is useful to compare P (Hn) with the standard basis. We have

σ̂k1...knσ̂k1...kn = σ̂0...0, tr σ̂0...0 = 2n, tr σ̂k1...kn
∣∣
k1...kn 6=0...0

= 0. (4)

The Pauli basis is Hermitian, unitary, and orthogonal with respect to the inner
product (1). Note that the operator |k〉〈l| of the standard basis is not unitary,
and it is not Hermitian if k 6= l. The standard basis does not contain the identity
operator which has the form

2n−1∑
k=0

|k〉〈k|

in that basis. In the Pauli basis, any operator Û from the unitary group U(Hn)
(that is, Û †Û = σ̂0...0) has an expansion of the form

Û =
∑

i1,...,in∈{0,1,2,3}

Ui1...inσ̂i1...in , Û † =
∑

i1,...,in∈{0,1,2,3}

U i1...inσ̂i1...in ,

where ∑
i1,...,in∈{0,1,2,3}

U i1...inUi1...in = 1,
∑

i1,...,in, j1,...,jn∈{0,1,2,3}
(i1,...,in)6=(j1,...,jn)

U i1...inUj1...jn = 0.

Note that the letter condition can be obviously decomposed into 22n−1(2n − 1
)

independent conditions.
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.3 Quantum states in the Pauli basis

A quantum state (a density operator) is a Hermitian, positive semidefinite (or
positive1, in short) operator of the form

ρ̂ =
1

2n

∑
k1,...,kn ∈{0,1,2,3}

ak1...knσ̂k1...kn ≡
1

2n

4n−1∑
K=0

aK σ̂K , (5)

where ak1...kn ∈ R and

a0...0 = 1 , |ak1...kn | 6 1,
∑

k1,...,kn ∈{0,1,2,3}

(ak1...kn)2 6 2n. (6)

The conditions (6) guarantee that ρ̂† = ρ̂, tr ρ̂ = 1, and tr ρ̂2 6 1. For quantum
computation, it is important that all coefficients in the state (5) are real and each
of them, except a0...0, is exactly the result of a local measurement with one of the
basis operators (3), aK ≡ ak1...kn = tr

(
ρ̂σ̂k1...kn

)
. All the quantum (pure and mixed)

states constitute a convex set (closed manifold, since it is the preimage of 1 under
the map tr : H(Hn) → R) of real dimension 4n − 1 in the real linear manifold
Sn ⊂ Span{P (Hn)} = H(Hn), while the pure states are placed on the boundary of
Sn and make up a real submanifold of dimension 2n+1 − 2.

Each element of P (Hn) is idempotent (σ̂K σ̂K = σ̂0...0), so that the operators

P̂±K =
σ̂0...0 ± σ̂K

2

are projectors. Thus, the observable σ̂K = P̂+ − P̂− σ̂K is naturally reduced to
projective measurements. Using the operators P̂±K , we can now prove the following
practically important proposition which seems to have not been considered in, at
least, the current literature.

Proposition 1. The condition |ak1...kn| 6 1 in (6) follows from the positive definiteness
of the density operator (5) and the first condition in (6).

Note that Hermitian projectors P̂±K = P̂±K P̂
±
K =

(
P̂±K
)†
P̂±K are positive operators

because of the obvious inequalities

〈u|P̂±K |u〉 = 〈u|
(
P̂±K
)†
P̂±K |u〉 > 0.

In general a Hermitian operator Â ∈ L(Hn) is positive if and only if there exists
some operator B̂ ∈ L(Hn) such that Â = B̂B̂†; moreover, B̂ can be chosen to be
Hermitian [15]. It in turn implies that (Â and ρ̂ are positive)

tr
(
Âρ̂
)

= tr
(
B̂B̂†ρ̂

)
= tr

(
B̂†ρ̂B̂

)
> 0,

1For our purpose in this article, we do not need to distinguish between positive semidefinite

and positive definite operators.
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since B̂†ρ̂B̂ is obviously positive. Thus,

tr
(
P̂±K ρ̂

)
=

1± aK
2

> 0, (7)

so that −1 6 aK 6 1. The proof is complete. �

As an example, we write down one of the practically useful states in the standard
basis and in the Pauli basis, namely, the three-qubit Greenberger-Horne-Zeilinger
state. Using the operator CNOT and the Hadamard operator Û+

2 , which are defined
by relations (13) and (14) in Appendix A2, we can write the unitary transformation
of the initial state |000〉 to the GHZ3 state in the form

ÛGHZ3 =
(
σ̂0 ⊗ CNOT

)
◦
(
CNOT ⊗ σ̂0

)
◦
(
Û+
2 ⊗ σ̂00

)
,

from which it is easy to find

ρ̂GHZ3
= =

1

2

(
|000〉〈000|+ |000〉〈111|+ |111〉〈000|+ |111〉〈111|

)
=

1

8

(
σ̂000 + σ̂111 − σ̂122 − σ̂212 − σ̂221 + σ̂033 + σ̂303 + σ̂330

)
.

.4 Operations with Pauli strings

We will need a few facts and definitions related to the Pauli basis and to the set of
n-length Pauli strings,

Strn = {K = k1 . . . kn}k1,...,kn ∈{0,1,2,3}.

First, let us consider the set F4 = {0, 1, 2, 3} as the Klein four-group with the
multiplication rules

0∗k = k, k∗k = 0, k∗l = m,

where k, l,m ∈ {1, 2, 3} and klm is any permutation of 123. Second, let the function
s : F4 × F4 → {1, i,−i} be defined by its values

s(0, 0) = s(0, k) = s(k, 0) = s(k, k) = 1, k = 1, 2, 3,

s(1, 2) = s(2, 3) = s(3, 1) = i, s(2, 1) = s(3, 2) = s(1, 3) = −i.

Further, let the function S : Strn×Strn → {1,−1, i,−i}, (K,L) 7→ SKL, be defined
as the product

SKL = s(k1, l1)s(k2, l2) . . . s(kn, ln), K = k1k2 . . . kn, L = l1l2 . . . ln.

The function S is symmetric or antisymmetric depending on the number of pairs
(kr, lr) (r is a position in the strings K and L) such that kr, lr ∈ {1, 2, 3} and kr 6= lr,
and also depending on the relative ordering in them. Let w+

KL and w−KL be the
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numbers of pairs of the forms (1, 2), (2, 3), (3, 1) and of the forms (2, 1), (3, 2), (1, 3)
respectively, and let wKL = w+

KL + w−KL. Then

SKL = (i)wKL(−1)w
−
KL , S(KL) =

SKL
2

(
1 + (−1)wKL

)
, S[KL] =

SKL
2

(
1− (−1)wKL

)
, (8)

where round and square brackets denote symmetrization and antisymmetrization,
respectively. The values of SKL, S(KL), and S[KL] are given in Table 2.

wKL mod 4 0 2 0 2 1 3 1 3

w−KL mod 2 0 1 1 0 0 1 1 0

SKL 1 1 −1 −1 i i −i −i
S(KL) 1 1 −1 −1 0 0 0 0

S[KL] 0 0 0 0 i i −i −i

Table 1: The factors before σ̂M in (9) for σ̂K σ̂L, {σ̂K , σ̂L}, and [iσ̂K , iσ̂L].

Now the composition of two Pauli basis elements and their anticommutator and
commutator can be written in the form of compact expressions that are convenient
for classical computer programming:

σ̂K σ̂L = SKLσ̂M , {σ̂K , σ̂L} = S(KL)σ̂M , [iσ̂K , iσ̂L] = −S[KL]σ̂M , (9)

where

σ̂M = σ̂m1...mn , m1 = k1∗l1, . . . ,mn = kn∗ln. (10)

Note that two Pauli strings of length n can commute, even if they have different
nonzero entries in some the same locations. For example, the three operators σ̂11,
σ̂22, and σ̂33 mutually commute. It is also easy to see that the unitary transition
matrix, transforming the standard basis

{
|i1 . . . in〉〈j1 . . . jn|

}
into the Pauli basis,

consists of only the elements 0, ±1, and ±i. In particular,

|00 . . . 0〉〈00 . . . 0| → 1

2n

∑
i1,...,in∈{0,3}

σ̂i1...in .

More generally, the standard orthogonal projectors can be expressed as

|i1. . . in〉〈i1. . . in|i1,...,in∈{0,1} =
1

2n

∑
k1,...,kn∈{0,3}

χi1k1 · · ·χ
in
kn
σ̂k1...kn ,

where

χ0
0 = χ0

3 = χ1
0 = 1, χ1

3 = −1.

Some important operators in the Pauli basis are written in Appendix A2 on page 14.



8 V. V. Nikonov and A. N. Tsirulev

The expressions (9) show, first, that the set {iσ̂K}4
n−1
K=0 makes up an orthonormal

basis in su(n). And, second, the set

P̃ (Hn) =
{
εσ̂K |K ∈ Strn, ε ∈ {±1, ±i}

}
,

which consists of 4n+1 elements, is a group; it is called the (n-qubit) Pauli group.
The normalizer of the Pauli group,

C(Hn) =
{
Û ∈ U(Hn) | Û σ̂KÛ † ∈ P̃ (Hn), σ̂K ∈ P̃ (Hn)

}
,

is called the Clifford group. We have from 2, 4, and 10 the following proposition:

Proposition 2. The mutual unitary transformations of the Pauli basis operators obey
the relations σ̂i1...inσ̂k1...knσ̂i1...in = ±σ̂i1...in, where the plus sign takes place if and
only if the number of triples (imkmim)m∈{1,...,n}, satisfying the conditions im 6= km,
im 6= 0, and km 6= 0, is even.

.5 Algorithms for transition to the Pauli basis

In a standard basis and in the Pauli basis, we can express an operator Â ∈ L(Hn)
(for example, a unitary transformation, an observable, or a density operator) as

Â =
∑

i0,...,in−1,j0,...,jn−1∈{0,1}

ain−1...i0jn−1...j0|in−1. . . i0〉〈jn−1. . . j0|

=
1

2n

∑
i0,...,in−1∈{0,1,2,3}

sin−1...i0σ̂in−1...i0 ,

or, in short,

Â =
2n−1∑
i=0

2n−1∑
j=0

aij|i〉〈j| =
1

2n

4n−1∑
I=0

SI σ̂I . (11)

Thus, we deal with the problem of calculating the coefficients SI when the
coefficients ai are given; such an algorithm have recently been proposed [13]. Our
approach is based on the following observation: all coefficients aij with binary
strings i = in−1 . . . i0 and j = jn−1 . . . j0, which have the same sum

k = (kn−1 . . . k0)2 = (in−1 . . . i0)2 ⊕ (jn−1 . . . j0)2 ,

give nonzero contributions only to the terms of the form S
(i⊕j)
l σ̂l, where l is a

binary string ln−1 . . . i0, 0 6 l 6 2n − 1, and the operators σ̂l must be recalculated
to the form (11). It is straightforward (but cumbersome) to prove that the strings

I = I(k, l) =
[
I
(k)
0 , . . . , I

(k)
2n−1

]
4
, k = i⊕ j, in σ̂I are determined by

I = l̄ ∧ k + 2
(
l ∧ k

)
+ 3
(
l ∧ k̄

)
, (12)
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where a bar above a letter denotes the inversion 0↔ 1 for each digit of the corre-
sponding binary string, and ∧ denotes the logical operation OR. On the right hand
side in (12), we consider the resulting binary strings as base-4 numbers. For given
binary strings i and j, the pseudocode of this procedure is written in Algorithm 1.

For example, summands

a010,001|010〉〈001| =
a21
23

(
σ̂011 + iσ̂012 − iσ̂021 + σ̂022 + σ̂311 + iσ̂312 − iσ̂321 + σ̂322

)
,

a001,010|001〉〈010| =
a12
23

(
σ̂011 − iσ̂012 + iσ̂021 + σ̂022 + σ̂311 − iσ̂312 + iσ̂321 + σ̂322

)
,

a101,110|101〉〈110| =
a56
23

(
σ̂011 − iσ̂012 + iσ̂021 + σ̂022 − σ̂311 + iσ̂312 − iσ̂321 − σ̂322

)
,

a111,100|111〉〈100| =
a74
23

(
σ̂011 − iσ̂012 − iσ̂021 − σ̂022 − σ̂311 + iσ̂312 + iσ̂321 + σ̂322

)
will contribute to the linear combination of σ̂011, σ̂012, σ̂021, σ̂022, σ̂311, σ̂312, σ̂321,
and σ̂322 with

k = 010⊕ 001 = 001⊕ 010 = 101⊕ 110 = 111⊕ 100 = 011.

The elements of the Pauli basis emerging in (12) from these summands are shown
in Table 2. For example, if l = 5 = (101)2, then, in accordance with (12),

I(3)[5] =
[
(010)2 ∧ (011)2

]
4

+ 2
[
(101)2 ∧ (011)2

]
4

+ 3
[
(101)2 ∧ (100)2

]
4

=
[
010
]
4

+ 2
[
001
]
4

+ 3
[
100
]
4

= 312.

Next, as an example, the summand a101,110|101〉〈110| = a56|5〉〈6| contributes ia56/2
3

in S(3)[5], since there are the triples (l0i0j0) = (110)2, (l1i1j1) = (001)2, and
(l2i2j2) = (111)2 in Algorithm 1 (lines 17 – 26); therefore, sign = 1, c = 1.

l 0 1 2 3 4 5 6 7

l2l1l0 000 001 010 011 100 101 110 111

k2k1k0 011 011 011 011 011 011 011 011

l̄ ∧ k 011 010 001 000 011 010 001 000

l ∧ k 000 001 010 011 000 001 010 011

l ∧ k̄ 000 000 000 000 100 100 100 100

σ̂I σ̂011 σ̂012 σ̂021 σ̂022 σ̂311 σ̂312 σ̂321 σ̂322

Table 2: The elements of the Pauli basis emerging for k = 011.
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Algorithm 1 Transformation to the Pauli basis.

1: Input the number of qubits n

2: Input strings i = in−1 . . . i0 and j = jn−1 . . . j0, is, js ∈ {0, 1}
3: Input a complex number aij — the factor in aij|i〉〈j|
4: //Make up the row number k = i⊕ j
5: Initialize string k = null

6: for is = i0, . . . , in−1 do

7: for js = j0, . . . , jn−1 do

ks = is ⊕ js
8: end for

9: end for

10: Convert (kn−1 . . . k0)2 to int (k)10
11: //For the number k, fill in two rows

12: Initialize S(k) by zero 2n-length complex-data-type vector

13: Initialize I(k) by null 2n-length string-data-type vector

14: Initialize int cntr and sign ∈ {1, −1, i, −i} by arbitrary values

15: for l = 0 to 2n − 1 do

16: Convert (l)10 to (ln−1 . . . l0)2
17: cntr = 0 and sign = 1

18: for ls = l0, . . . , ln−1 do

19: if ls == 1 then

20: if (is, js) == (1, 1) then sign = −sign
21: if (is, js) == (0, 1) then cntr = cntr + 1

22: if (is, js) == (1, 0) then sign = −sign, cntr = cntr + 1

23: end if

24: end for

25: I(k)[l] = l̄ ∧ k + 2
(
l ∧ k

)
+ 3
(
l ∧ k̄

)
26: int c = cntr (mod4), S(k)[l] += ic · sign · aij
27: end for

28: Return the rows S(k) and I(k).

.6 Conclusion

In this article, we have described a base technique for working with the Pauli basis.
It is shown that this technique can make more convenient and algorithmic some
manipulations with mathematical expressions related to quantum circuits with large
number of qubits. We have presented a new efficient algorithm with a polynomial
complexity for transition from the standard basis to the Pauli basis.
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Appendix

A1. The Pauli basis for n = 2

For reference, we give here expressions of the elements of the standard basis in H2

in terms of the elements of the Pauli basis. Recall that such expressions in H1 have
the form

|0〉〈0| = σ̂0 + σ̂3
2

, |0〉〈1| = σ̂1 + iσ̂2
2

, |1〉〈0| = σ̂1 − iσ̂2
2

, |1〉〈1| = σ̂0 − σ̂3
2

.

|00〉〈00| = σ̂00 + σ̂03 + σ̂30 + σ̂33
4

, |01〉〈00| = σ̂01 − iσ̂02 + σ̂31 − iσ̂32
4

,

|10〉〈00| = σ̂10 + σ̂13 − iσ̂20 − iσ̂23
4

, |11〉〈00| = σ̂11 − iσ̂12 − iσ̂21 − σ̂22
4

,

|00〉〈01| = σ̂01 + iσ̂02 + σ̂31 + iσ̂32
4

, |01〉〈01| = σ̂00 − σ̂03 + σ̂30 − σ̂33
4

,

|10〉〈01| = σ̂11 + iσ̂12 − iσ̂21 + σ̂22
4

, |11〉〈01| = σ̂10 − σ̂13 − iσ̂20 + iσ̂23
4

,

|00〉〈10| = σ̂10 + σ̂13 + iσ̂20 + iσ̂23
4

, |01〉〈10| = σ̂11 − iσ̂12 + iσ̂21 + σ̂22
4

,

|10〉〈10| = σ̂00 + σ̂03 − σ̂30 − σ̂33
4

, |11〉〈10| = σ̂01 − iσ̂02 − σ̂31 + iσ̂32
4

,

http://arxiv.org/abs/2011.08942
https://arxiv.org/abs/2003.09412
https://arxiv.org/abs/quant-ph/0308033
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|00〉〈11| = σ̂11 + iσ̂12 + iσ̂21 − σ̂22
4

, |01〉〈11| = σ̂10 − σ̂13 + iσ̂20 − iσ̂23
4

,

|10〉〈11| = σ̂01 + iσ̂02 − σ̂31 − iσ̂32
4

, |11〉〈11| = σ̂00 − σ̂03 − σ̂30 + σ̂33
4

.

A2. Some unitary operators in the Pauli basis

The controlled-NOT operator:

CNOT =
σ̂00 + σ̂01 + σ̂30 − σ̂31

2
= |00〉〈00|+ |01〉〈01|+ |10〉〈11|+ |11〉〈10|, (13)

The controlled-phase operator:

CZ =
σ̂00 + σ̂03 + σ̂30 − σ̂33

2
= |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|.

It is well known that CNOT and CZ belong to the Clifford group C(H2). It
is also known some sets of generators and canonical forms for operators of the
group C(Hn) (see, e.g., [14]), but the number of elements in these groups grows
exponentially (in fact, slightly faster) with the growth of n: for example, C(H1)
is of order 24, and C(H2) is of order 11520. Therefore, there is the problem of
finding a practically suitable [16] set of unitary operators for building the Clifford
groups and the corresponding stabilizer formalism. Here we introduce the one-qubit
Hadamard operator Û+

2 , and pseudo-Hadamard operators Û−2 , Û±1 and Û±3 , obeying

the relations
(
Û±1
)2

=
(
Û±2
)2

=
(
Û±3
)2

= σ̂0. They are unitary and Hermitian, and
are defined by

Û±1 =
σ̂2 ± σ̂3√

2
=

1√
2

(
± |0〉〈0| − i|0〉〈1|+ i|1〉〈0| ∓ |1〉〈1|

)
,

Û±2 =
σ̂1 ± σ̂3√

2
=

1√
2

(
± |0〉〈0|+ |0〉〈1|+ |1〉〈0| ∓ |1〉〈1|

)
, (14)

Û±3 =
σ̂1 ± σ̂2√

2
= e∓iπ/4|0〉〈1| ± e±iπ/4|1〉〈0|.

They can be used for constructing unitary transformations σ̂i ↔ ±σ̂j (i 6= j) and
σ̂i → −σ̂i (i = 1, 2, 3):

Û±k σ̂iÛ
±
k = ±σ̂j, Û±k σ̂kÛ

±
k = −σ̂k, i 6= j 6= k, i, j, k ∈ {1, 2, 3},
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or, in more detail,

Û±1 σ̂2Û
±
1 = ±σ̂3, Û±1 σ̂3Û

±
1 = ±σ̂2, Û±1 σ̂1Û

±
1 = −σ̂1,

Û±2 σ̂1Û
±
2 = ±σ̂3, Û±2 σ̂3Û

±
2 = ±σ̂1, Û±2 σ̂2Û

±
2 = −σ̂2,

Û±3 σ̂1Û
±
3 = ±σ̂2, Û±3 σ̂2Û

±
3 = ±σ̂1, Û±3 σ̂3Û

±
3 = −σ̂3.

Further, for the sake of uniformity, we denote σ̂0 by Û0. Thus, for example, we can
choose the full set of generators for C(H1) in the form (Ûi ≡ Û+

i , i = 1, 2, 3){
Û0, Û1, Û2, Û3

}
.

In the general case of P̃ (Hn), a a full set of generators for the group C(Hn) constitute
operators of the form{

Ûi1...in = Ûi1 ⊗ · · · ⊗ Ûin
}
i1,...,in∈{0,1,2,3}

.
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