
http://mmg.tversu.ru ISSN 2311-1275

MMG Mathematical Modelling
and Geometry

Volume 8, No 2, pp. 1 – 13 (2020) doi:10.26456/mmg/2020-821

Static spherically symmetric space-time and

nonlinear spinor field

Bijan Saha

Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna,
Moscow region, Russia, 141980

Institute of Physical Research and Technologies, People’s Friendship University, Moscow, Russia

e-mail: bijan@jinr.ru, http://spinor.bijansaha.ru

Received 20 August 2020. Published 31 August 2020.

Abstract. We studied nonlinear spinor fields in the framework of a static sp-
herically symmetric space-time. In doing so we have suggested a rather simple
method to solve the corresponding Einstein equations. As an example, a nonlinear
spinor field was considered. The corresponding equations were solved analytically
and numerically.

Keywords: spinor field, spherically symmetric model

PACS numbers: 98.80.Cq

c©The author(s) 2020. Published by Tver State University, Tver, Russia

https://doi.org/10.26456/mmg/2020-821


2 Bijan Saha

.1 Introduction

Spherically symmetric space-times are invariant under spatial rotation, hence it is
a natural choice to describe simple bodies and island-like configurations [1]. In this
case metric functions depend on only radial and time coordinates, while in case of
a static spherically symmetric space-time there is no time dependence. One of the
most celebrated static spherically symmetric solution to the Einstein equations is
the Schwarzschild solution.

Static spherically symmetric space-time is widely exploited is general relativity
to model several objects such as compact stars, black holes, wormholes etc. In view
of it a system of interacting scalar and electromagnetic fields was studied in [2].
Note that in the recent past spinor description of matter and dark energy was used
to draw the picture of the evolution of the Universe within the scope of Bianchi
type anisotropic cosmological models [3, 4, 5, 6]. It was found that the approach in
question gives rise to a variety of solutions depending on the choice of spinor field
nonlinearity. Thanks to its sensitivity to gravitational field spinor field brings some
unexpected nuances in the behavior of both the spinor and the gravitational fields.
Taking this in mind recently we have studied the nonlinear spinor field within the
scope of a static spherically symmetric space-time [7, 8, 9]. The stability of static
spherically symmetric solutions of Rastall’s theory was studied in [10]. In this
report we continue our study which in our view gives a simpler method to study
and analyze the equations in question.

.2 Basic Equation

The action we choose in the form

S =

∫ √
−g
[
R

2κ
+ Lsp

]
dΩ, (1)

where κ = 8πG is Einstein’s gravitational constant, R is the scalar curvature, and
Lsp is the spinor field Lagrangian given by

Lsp =
ı

2

[
ψ̄γµ∇µψ −∇µψ̄γ

µψ
]
−mspψ̄ψ − λF, (2)

where λ is the self-coupling constant. The nonlinear term F describes the self-
interaction of a spinor field and can be presented as some arbitrary functions of
invariants generated from the real bilinear forms of a spinor field. Since ψ and ψ?

(complex conjugate of ψ) have four component each, one can construct 4× 4 = 16
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independent bilinear combinations. They are

S = ψ̄ψ (scalar), (3a)

P = iψ̄γ5ψ (pseudoscalar), (3b)

vµ = (ψ̄γµψ) (vector), (3c)

Aµ = (ψ̄γ5γµψ) (pseudovector), (3d)

T µν = (ψ̄σµνψ) (antisymmetric tensor), (3e)

where σµν = (i/2)[γµγν − γνγµ]. Invariants, corresponding to the bilinear forms,
are

I = S2, (4a)

J = P 2, (4b)

Iv = vµ v
µ = (ψ̄γµψ) gµν(ψ̄γ

νψ), (4c)

IA = AµA
µ = (ψ̄γ5γµψ) gµν(ψ̄γ

5γνψ), (4d)

IT = Tµν T
µν = (ψ̄σµνψ) gµαgνβ(ψ̄σαβψ). (4e)

According to the Fierz identity, among the five invariants only I and J are inde-
pendent as all others can be expressed by them: Iv = −IA = I + J and IT = I − J.
Therefore, we choose the nonlinear term F = F (K) with K taking one of the
following expressions: {I, J, I + J, I − J}.

The spinor field equations corresponding to the Lagrangian (2) are

ıγµ∇µψ −mspψ −Dψ − ıGγ5ψ = 0, (5a)

ı∇µψ̄γ
µ +mspψ̄ +Dψ̄ + ıGψ̄γ5 = 0, (5b)

where we denote D = 2λSFKKI and G = 2λPFKKJ , with FK = dF/dK, KI =
dK/dI and KJ = dK/dJ. In view of (5) it can be shown that

Lsp = λ (2KFK − F ) . (6)

The energy-momentum tensor of the spinor field is given by

T ρ
µ =

ı

4
gρν
(
ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ

)
− δρµLsp. (7)

In the expressions above ∇µ denotes covariant derivative of the spinor field [4]

∇µψ = ∂ψ − Ωµψ, ∇µψ̄ = ∂ψ̄ + ψ̄Ωµ, (8)

where Ωµ is the spinor affine connection which can be defined as [4, 11, 12]

Ωµ =
1

8
[∂µγα, γ

α]− 1

8
Γβµα [γβ, γ

α] , (9)
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where [a, b] = ab− ba. Here Dirac matrices in the curve space-time γ are connected
to the flat space-time Dirac matrices γ̄ as follows:

γµ = e(a)µ γ̄a, γµ = eµ(a)γ̄
a, (10)

where eα(a) and e
(b)
β are the tetrad vectors such that:

e(a)µ eµ(b) = δab , e(a)µ eν(a) = δµν , (11)

The γ matrices obey the following anti-commutation rules

γµγν + γνγµ = 2gµν , γµγν + γνγµ = 2gµν , (12)

and the flat-space-time Dirac matrices obey

γ̄aγ̄b + γ̄bγ̄a = 2ηab, γ̄aγ̄b + γ̄bγ̄a = 2ηab. (13)

The spinor affine connection can be equivalently defined as

Ωµ(x) =
1

4
gρσ(x)

(
∂µe

b
δe
ρ
b − Γρµδ

)
γσγδ, (14)

where Γβµα is the Christoffel symbol.

The spherically-symmetric metric we choose in the form

ds2 = e2γdt2 − e2αdu2 − e2β(dϑ2 + sin2 ϑdϕ2), (15)

where the metric functions γ, α, β depend on the spatial variable u only. Since in
order to describe the spherically symmetric gravitational field we need only two
components of the metric tensor [14], then in (15) it is possible to choose explicitly
one of the three metric functions γ, α, β or demand that all these functions satisfy
one of the following coordinate conditions [1, 13, 14]:

1. α = 0 - polar Gauss coordinate;

2. α = γ - isometric coordinate;

3. α = β - homogeneous coordinate;

4. eβ = r - curvature coordinate. r is the radius of the sphere with u = const.
In this case the metric (15) takes the form

ds2 = e2γ(r)dt2 − e2α(r)dr2 − r2(dϑ2 + sin2 ϑdϕ2) (16)

5. α = γ + 2β - harmonic coordinate;
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6. α = −γ - quasiblobal coordinate.

In should be noted that since we consider the static spherically symmetric con-
figuration, all the field functions should depend on the spatial variable u only.

Let us now define the spinor affine connection for the metric (15). First we write
the corresponding Chrystoffel symbols

Γ0
10 = γ′, Γ1

11 = α′, Γ2
12 = β′,

Γ3
13 = β′, Γ1

33 = −β′e2(β−α) sin2 θ, Γ2
33 = − sin θ cos θ, (17)

Γ1
00 = γ′e2(γ−α), Γ1

22 = −β′e2(β−α), Γ3
23 =

cos θ

sin θ

Taking into account that tetrad are connected with the metric functions in the
following way

gµν = e(a)µ e(b)ν ηab, (18)

where ηab = diag{1, −1, −1, −1}, for the metric (15) we choose the tetrad as
follows:

e
(0)
0 = eγ, e

(1)
1 = eα, e

(2)
2 = eβ, e

(3)
3 = eβ sin θ. (19)

Then from (10) and (11) for (15) one now finds

γ0 = eγ γ̄0, γ1 = eα γ̄1, γ2 = eβ γ̄2, γ3 = eβ sin θ γ̄3. (20)

Further taking into account that in our case

γ̄0 = γ̄0, γ̄1 = −γ̄1, γ̄2 = −γ̄2, γ̄3 = −γ̄3,

one also finds

γ0 = e−γ γ̄0, γ1 = e−αγ̄1, γ2 = e−βγ̄2, γ3 =
e−β

sin θ
γ̄3. (21)

The flat γ̄ matrices we choose in the from

γ̄0 =

(
I 0
0 −I

)
, γ̄1 =

(
0 σ1

−σ1 0

)
,

γ̄2 =

(
0 σ2

−σ2 0

)
, γ̄3 =

(
0 σ3

−σ3 0

)
.

where I is the unit matrix and σ are the Pauli matrices:

I =

(
1 0
0 1

)
, σ1 =

(
cosϑ sinϑe−ıϕ

sinϑeıϕ − cosϑ

)
,

σ2 =

(
− sinϑ cosϑe−ıϕ

cosϑeıϕ sinϑ

)
, σ2 =

(
0 ıe−ıϕ

−ıeıϕ 0

)
. (22)
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Defining γ5 as follows:

γ5 = − i
4
Eµνσργ

µγνγσγρ, Eµνσρ =
√
−gεµνσρ, ε0123 = 1,

γ5 = −i
√
−gγ0γ1γ2γ3 = −iγ̄0γ̄1γ̄2γ̄3 = γ̄5,

we obtain

γ̄5 =

(
0 −I
−I 0

)
.

Taking into account that the functions α, β and µ depend on only u (x1)
from (14) we find

Ω0 = −1

2
γ′ e(γ−α) γ̄0γ̄1, (23a)

Ω0 = 0, (23b)

Ω2 =
1

2
β′ e(β−α) γ̄2γ̄1, (23c)

Ω3 =
1

2
β′ sin θe(β−α) γ̄3γ̄1 +

1

2
cos θγ̄3γ̄2. (23d)

As it was mentioned earlier for a static spherically symmetric space-time all the
functions depend on u. Then in view of (5) and (23) we have [7]

ıe−αγ̄1ψ′ +
ı

2
(µ′ + 2β′) e−αγ̄1ψ +

ı

2

cos θ

θ
e−βγ̄2ψ −mspψ −Dψ − ıGγ5ψ = 0, (24a)

ıe−αψ̄′γ̄1 +
ı

2
(µ′ + 2β′) e−αψ̄γ̄1 +

ı

2

cos θ

sin θ
e−βψ̄γ̄2 +mspψ̄ +Dψ̄ + ıGψ̄γ5 = 0, (24b)

Then from (7) we find the following non-trivial components of the spinor field [7]:
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T 0
0 = T 2

2 = T 3
3 = λ (F − 2KFK) , (25a)

T 1
1 = mspS + λF, (25b)

T 0
1 =

1

4

cos θ

sin θ
e(α−µ−β)A3, (25c)

T 1
0 = −1

4

cos θ

sin θ
e(−α+µ−β)A3, (25d)

T 0
2 = −1

4
(µ′ − β′) e(β−α−µ)A3, (25e)

T 2
0 =

1

4
(µ′ − β′) e(µ−β−α)A3, (25f)

T 0
3 =

1

4
(µ′ − β′) e(β−α−µ) sin θA2 +

1

4
e−µ cos θA1, (25g)

T 3
0 = −1

4
(µ′ − β′) e(µ−β−α) 1

sin θ
A2 − 1

4
eµ−2β

cos θ

sin2 θ
A1. (25h)

For the invariants of spinor field we find [7]

S ′ + (µ′ + 2β′)S − 2eαGA1 = 0, (26a)

P ′ + (µ′ + 2β′)P + 2eα (msp +D)A1 = 0, (26b)

A1′ + (µ′ + 2β′)A1 +
cos θ

sin θ
eα−βA2 + 2eα (msp +D)P + 2eαGS = 0, (26c)

A2′ + (µ′ + 2β′)A2 − cos θ

sin θ
eα−βA1 = 0. (26d)

The foregoing system gives(
SS ′ − PP ′ + A1A1′ + A2A2′

)
+ (µ′ + 2β′)

(
S2 − P 2 + A12 + A22

)
= 0, (27)

with the relation

(
S2 − P 2 + A12 + A22

)
= C0e

−2(µ+2β). (28)

On the other hand from Fierz identity we know

S2 + P 2 = −AµAµ = −
(
A02 + A12 + A22 + A32

)
, (29)



8 Bijan Saha

Subtraction of (29) from (28) leads to

A02 = −C0e
−2(µ+2β) − 2P 2 − A32, (30)

whereas their addition yields

A02 = C0e
−2(µ+2β) − 2

(
S2 + A12 + A22

)
− A32. (31)

To solve the Einstein equations we have to know how the EMT which is a
function of K is connected to metric functions. It can be obtained exploiting the
system (26). Let us find the expression for K in all four cases.

1. Let us consider the case when K = I. In this case we have G = 0. Then from
(26a) one finds

S ′ + (µ′ + 2β′)S = 0, (32)

with the solution

S = CSe
−(µ+2β) =⇒ K = I = S2 = C2

Se
−2(µ+2β). (33)

2. If we choose K = J , i.e. D = 0, then in case of massless spinor field from(26b)
we find

P ′ + (µ′ + 2β′)P = 0, (34)

with the solution

P = CP e
−(µ+2β) =⇒ K = J = P 2 = C2

P e
−2(µ+2β). (35)

3. In case of K = I + J for the massless spinor field from (26a) and (26b) one
finds

S ′ + (µ′ + 2β′)S − 2eαGA1 = 0, (36a)

P ′ + (µ′ + 2β′)P + 2eαDA1 = 0. (36b)

Taking into account that DP = GS from (36) one finds

K = I + J = S2 + P 2 = C+e
−2(µ+2β). (37)
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4. Finally, in case of massless spinor field for K = I − J we find

S ′ + (µ′ + 2β′)S + 2eαGA1 = 0, (38a)

P ′ + (µ′ + 2β′)P + 2eαDA1 = 0, (38b)

which yields

K = I − J = S2 − P 2 = C−e
−2(µ+2β). (39)

Thus we see that in case of a massless spinor field K = K2
0e
−2(µ+2β) for K taking

any of the expressions {I, J, I +J, I−J}, while this is true for K = I even in case
of a massive spinor.

Note that the metric (15) has only nontrivial diagonal components, hence one
should set the non-diagonal components of the energy-momentum tensor trivial.
This can impose some restrictions either on the metric functions or on the compo-
nents of the spinor field as well as on both.

The Einstein tensor corresponding the metric (15) possesses only diagonal ele-
ments, hence the Einstein equations in this case takes the form

(
2γ′β′ + β′2

)
− e2(α−β) = −κT 1

1 , (40a)(
γ′2 + γ′β′ − γ′α′ + β′2 − β′α′ + γ′′ + β′′

)
= −κT 2

2 , (40b)(
3β′2 − 2β′α′ + 2β′′

)
− e2(α−β) = −κT 0

0 . (40c)

Subtraction of (40a) from (40c) gives [15]

β′′ + β′2 − α′β′ − γ′β′ = −κ
2

[
T 0
0 − T 1

1

]
, (41)

whereas subtraction of (41) from (40b) yields [15]

γ′′ + γ′2 − α′γ′ + 2γ′β′ = −κ
2

[
2T 2

2 − T 0
0 + T 1

1

]
. (42)

For numerical study it is convenient to rewrite the equations (41) and (42) in
the Cauchy form:
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β′ = ν, (43a)

γ′ = τ, (43b)

ν ′ + ν2 − α′ν − ντ = −κ
2

[
T 0
0 − T 1

1

]
= −κ

2
[mspS + 2λKFK ] , (43c)

τ ′ + τ 2 − α′τ + 2ντ = −κ
2

[
T 0
0 + T 1

1

]
= −κ

2
[mspS + 2λ (F −KFK)] . (43d)

In (43d) we have taken into account that in our case T 0
0 = T 2

2 .

As we have already found both S and K can be expressed in terms of metric
functions. So we have to give the concrete form of K. We also set K = I = S2 as
in this case we can consider massive spinor field. Let us assume that F = Sn. In
this case we have T 0

0 = λ(1−n)Sn = λ(1−n)Kn
0 e
−n(γ+2β) and T 1

1 = mspS+λSn =
mspK0e

−(γ+2β) + λKn
0 e
−n(γ+2β).

To solve the equations we have to impose some additional conditions which can
be given by for example harmonic and quasiglobal coordinate.

Case 1

Let us first consider the harmonic radial coordinate such that α = γ + 2β [13, 14].
In view of it the Eqns. (43) can be written as

β′ = ν, (44a)

γ′ = τ, (44b)

ν ′ = ν2 + 2ντ − κ

2

[
λnKn

0 e
−n(γ+2β) +mspK0e

−(γ+2β)
]
, [ (44c)

τ ′ = −κ
2

[
λ(2− n)Kn

0 e
−n(γ+2β) +mspK0e

−(γ+2β)
]
. (44d)

Let us solve the foregoing system numerically. Our aim is to obtain some quali-
tative solutions, so for simplicity we set K0 = 1, λ = 1 and msp = 1. We also set the
following initial values for the metric functions: τ(0) = 0.05, ν(0) = 0.05, γ(0) =
0.5, β(0) = 0.5. In Fig. 1 we have plotted the metric functions for linear case with
n = 1, while in Fig. 2 we have considered the nonlinear case with n = 4.

Case II

Let us now chose quasiglobal radial coordinate [1] such that α = −γ. Then
from (43) we find
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Figure 1: Plot of metric functions for

linear spinor field

Figure 2: Plot of metric functions for

a massive nonlinear spinor field with

power on nonlinearity n = 4

β′ = ν, (45a)

γ′ = τ, (45b)

ν ′ = −ν2 − κ

2

[
λnKn

0 e
−n(γ+2β) +mspK0e

−(γ+2β)
]
, (45c)

τ ′ = −2τ 2 − 2τν − κ

2

[
λ(2− n)Kn

0 e
−n(γ+2β) +mspK0e

−(γ+2β)
]
. (45d)

Like in previous case here too we will solve the system (45) numerically. We
consider the same parameters as in previous case. In Fig. 3 we have plotted the
metric functions for linear case with n = 1, while in Fig. 4 we have considered the
nonlinear case with n = 4.

As one sees, depending on the choice of coordinate condition we have completely
different behavior of the metric functions and the choice of nonlinearity does not
qualitatively change the solution, it only gives quantitatively different picture.

.3 Conclusion

Within the scope of a static spherically symmetric space-time we have investigated
the role of the spinor field nonlinearity. In doing so we have written the Einstein
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Figure 3: Plot of metric functions for

linear spinor field.

Figure 4: Plot of metric functions for

a massive nonlinear spinor field with

power on nonlinearity n = 4

gravitational field equations in such a way that knowing the energy-momentum
tensor of the source field one can have some idea about the type of solution. Though
we have exploited the spinor field as the source, it is possible to consider other well
known fields and compare the results.
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