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Abstract. We analyze how predictions of cosmological models depend on a choice
of described observational data, restrictions on flatness, and how this choice can
alleviate the H0 tension. These effects are demonstrated in the wCDM model in
comparison with the standard ΛCDM model. We describe the Pantheon sample
observations of Type Ia supernovae, 31 Hubble parameter data points H(z) from
cosmic chronometers, the extended sample with 57 H(z) data points and observa-
tional manifestations of cosmic microwave background radiation (CMB). For the
wCDM and ΛCDM models in the flat case and with spatial curvature, we calcu-
late χ2 functions for all observed data in different combinations, estimate optimal
values of model parameters and their expected intervals. For both considered
models the results essentially depend on a choice of data sets. In particular, for
the wCDM model with H(z) data, supernovae and CMB the 1σ estimations may
vary from H0 = 67.52+0.96

−0.95 km /(s·Mpc) (for all NH = 57 Hubble parameter data

points) up to H0 = 70.87+1.63
−1.62 km /(s·Mpc) for the flat case (k = 0) and NH = 31.

These results might be a hint how to alleviate the problem of H0 tension: different
estimates of the Hubble constant may be connected with filters and a choice of
observational data.
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.1 Introduction

One of the most significant problem in modern cosmology is the tension between
estimations of the Hubble constantH0 made (from one side) by Planck collaboration
during the last 6 years [1, 2, 3] with the recent fitting [3] H0 = 67.37 ± 0.54
km /(s·Mpc) and (from another side) by the Hubble Space Telescope (HST) group
[4, 5] H0 = 74.03 ± 1.42 km /(s·Mpc). Estimations of Planck collaboration are
based upon analysis of cosmic microwave background (CMB) data whereas the
HST method uses direct local distance ladder measurements of Cepheids in our
Galaxy and in nearest galaxies, in particular, observations of 70 Cepheids in the
Large Magellanic Cloud in the latest paper [5].

This mismatch between H0 estimations of Planck and HST collaborations was
not diminishing but was growing during last years and now it exceeds 4σ [3, 5].

Cosmologists suggested different approaches for solving this problem: equations
of state with several variations, new components of matter, in particular, extra
relativistic species, modifications and transitions in early evolution, modifications of
general relativity, interactions of components and others [6] – [28] (see the extended
list of literature in Ref. [28]). In particular, in papers [21] – [28] scenarios with
interaction between dark energy and dark matter are explored. The authors analyze
observational data with these models and estimate optimal values of H0, which can
appear essentially different (compatible with the tension described above) if they
include or exclude the interaction. The predicted value of H0 in these scenarios
is also sensitive to some additional factors: curvature, neutrino masses, effective
number of neutrino species, variations in equation of state, etc.

In the present paper, we demonstrate that similar variations of predicted values
H0 and their dependence on model parameters may be obtained in the (more simple)
wCDM model without interaction [29, 30, 31]. In this model the dark energy
component is described as a fluid with the equation of state px = wρx, w = const.
Other matter components (including the usual visible matter and cold dark matter)
in the wCDM scenario are the same as in the standard ΛCDM model (see Sect. 2).

For the considered cosmological models, estimations of the Hubble constant H0

and other model parameters are made via confronting the models with observational
data. We used the similar approach previously in Refs. [32] – [40].

In this paper, we include in our analysis the following observations: the latest
Type Ia supernovae data (SNe Ia) from the Pantheon sample survey [41], data
connected with cosmic microwave background radiation (CMB) and extracted from
Planck observations [2, 42], and the Hubble parameter estimationsH(z) for different
redshifts z.

We analyze separately 31 Hubble parameter data points H(z) measured from
differential ages of galaxies (in other words, from cosmic chronometers), and the
full set with 26 additional H(z) data points obtained as observable effect of baryon
acoustic oscillations (BAO). These data sets and effects of their choice were studied
previously in Ref. [38] for the model with generalized Chaplygin gas and the ΛCDM
model. All these 57 H(z) data points were used in Ref. [39], whereas in Ref. [40]
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31 H(z) data points from cosmic chronometers were applied to the F (R) model
considered there.

This paper is organized as follows. Details of dynamics and free model parame-
ters for the wCDM and ΛCDM scenarios are described in the next section. Sect. 3
is devoted to H(z), SNe Ia and CMB observational data. In Sect. 4 we analyze the
results of our calculations for the H(z) and SNe Ia observations, estimated values
of model parameters including the Hubble constant H0 and in Sect. 5 we add the
CMB data to our analysis.

.2 ΛCDM and wCDM models

In the ΛCDM and wCDM models, for a homogeneous isotropic Universe with the
Friedmann-Lemâıtre-Robertson-Walker line element

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (1)

the Einstein equations are reduced to the system of the Friedmann equation

3
ȧ2 + k

a2
= 8πGρ+ Λ (2)

and the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (3)

Here a = a(t) is the scale factor, ȧ = da
dt

is its derivative with respect to time t,
G is the Newton gravitational constant, k is the sign of spatial curvature, ρ is the
energy density of matter, Λ is the cosmological constant describing dark energy in
the ΛCDM model; we choose the units where the speed of light c = 1.

In the ΛCDM and wCDM models the matter with density ρ in Eq. (2) includes
the cold matter component with density ρm = ρb + ρdm (it unifies baryons and
dark matter, behaves like dust, and has zero pressure pm = 0), and the fraction of
relativistic matter (radiation and neutrinos) with density ρr and pressure pr = ρr/3.
We suppose that the mentioned components and dark energy do not interact as
modelled in Refs. [35, 36], in other words, they independently satisfy the continuity
equation (3). We integrate this equation with pm = 0 and pr = ρr/3 and obtain
the relations for cold and relativistic matter:

ρm = ρ0
m

( a
a0

)−3

, ρr = ρ0
r

( a
a0

)−4

. (4)

Here the index “0” corresponds to the present time t0, in particular, ρ0
m = ρm(t0),

a0 = a(t0).
In sections below for both considered models we compare model predictions

with observations of the Hubble parameter

H =
ȧ

a
=

d

dt
ln a. (5)



4 G. S. Sharov, E. S. Sinyakov. Cosmological models

We use observational data from our previous papers [38, 39] with estimations of
H = H(z) corresponding to definite values of redshift z

z =
∆λ

λ
=
a0

a
− 1. (6)

Parameter z is observed with high accuracy as the ratio of a wavelength shift to an
emitted wavelength. In the relation (6) z+ 1 = a0/a the scale factor a corresponds
to the event (emission) epoch.

We express the Hubble parameter (5) H = H(a) or, equivalently, H = H(z)
from the Friedmann equation (2). For the ΛCDM model with density (4) and the Λ
term (describing the dark energy), the expression for the ratio of H to the Hubble
constant H0 = H(t0) takes the form

H2

H2
0

= Ω0
m

( a
a0

)−3

+ Ω0
r

( a
a0

)−4

+ ΩΛ + Ωk

( a
a0

)−2

, (7)

= Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + ΩΛ + Ωk(1 + z)2. (8)

Here

Ω0
m =

8πGρ0
m

3H2
0

, Ω0
r =

8πGρ0
r

3H2
0

, ΩΛ =
Λ

3H2
0

, Ωk = − k

a2
0H

2
0

(9)

are fractions of cold matter (Ω0
m), radiation (Ω0

r), dark energy (ΩΛ) and space-time
curvature (Ωk), respectively, in the current density balance.

Under the condition z = 0 or a = a0 (corresponding to the present time t = t0),
the equations (7) or (8) are reduced to the equality

Ω0
m + Ω0

r + ΩΛ + Ωk = 1. (10)

Hence, the summands Ωi in this equality are not independent. So we can consider
(any) three of these Ωi as free parameters of the model.

One should note that a large number of free model parameters is a disadvantage
of any cosmological scenario [35] – [40]. In order to reduce the number of free para-
meters, we fix the radiation-matter ratio as provided by Planck [1] in accordance
with the previous papers [37, 40]:

Xr =
ρ0
r

ρ0
m

=
Ω0

r

Ω0
m

= 2.9656 · 10−4 . (11)

In other words, we fix the effective number Neff of relativistic species in accordance
with the standard cosmological model and Planck data [1, 2]: Neff = 3.046± 0.18.
Because of small value Xr, the relativistic (radiation) fraction Ωr is insufficient for
H(z) and Type Ia Supernovae observational data concerning redshifts 0 ≤ z ≤ 2.36.
In Sect. 3 we shall apply this component with its fraction Ωr(z) = Ω0

r(1 + z)4 to
describing observational manifestations of cosmic microwave background radiation
(CMB) with the fixed value Xr (11).
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Under the condition (11), the ΛCDM model (describing the late time evolution
of the Universe) has three independent parameters: H0 and any two of the three
Ωi. Below we use Ω0

m and Ωk as independent parameters.
The wCDM model generalizes the ΛCDM scenario. In the wCDM model the

cold and relativistic matter components are just the same (with evolution (4) of
densities ρm = ρb + ρdm and ρr), but the dark energy is described as a fluid, whose
pressure px is related to the energy density ρx by the ratio px = wρx. Here the
constant w is an additional free parameter in this model, where Λ = 0 and the total
energy density is ρ = ρm + ρr + ρx.

Thus, from Friedmann equation (2) we deduce the analog of the Eq. (7) or (8)
for the wCDM model:

H2

H2
0

= Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + Ωk(1 + z)2 + Ωx(1 + z)3(1+w). (12)

Here the dark energy fraction Ω0
x = 8πGρ0

x/(3H
2
0 ) is connected with other fractions,

Ω0
m + Ω0

r + Ω0
x + Ωk = 1.

This analog of Eq. (10) results from equation (12) at z = 0.
Hence, in the wCDM model we have four independent parameters, we should

add w to the set of three known (ΛCDM) parameters: H0, Ω0
m and Ωk.

In the particular case w = −1, the wCDM model (12) transforms into the
ΛCDM model (8).

.3 Observational data

As was mentioned above, for the considered cosmological models we calculate their
optimal model parameters taking into account the best correspondence to a chosen
set of observational data. These data include: 1) estimates of the Hubble parameter
H(z) at various redshifts; 2) observations of Type Ia supernovae (SNe Ia) from the
Pantheon sample [41]; and 3) data from Planck observations of cosmic microwave
background radiation (CMB) [2, 42].

In accordance with the previous papers [33] – [40] we divide the Hubble parame-
ter data H(z) into two parts. The first part contains now 31 estimations of H(z)
(named also cosmic chronometers) measured via differential ages of galaxies ∆t,
the formula (6), and its corollary

H(z) =
ȧ

a
= − 1

1 + z

dz

dt
' − 1

1 + z

∆z

∆t
.

The second method uses observations based on baryon acoustic oscillation (BAO)
data along the line-of-sight directions. In this paper we use 31 H(z) data points
from cosmic chronometers and 26 data points obtained with BAO method; all these
data and corresponding references are tabulated in Refs. [38, 39].
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We analyze separately NH = 31 H(z) data points from cosmic chronometers,
and the full set with all NH = 57 = 31 + 26 Hubble parameter data points. For
a cosmological model with free parameters denoted by p1, p2, . . . , the best fitted
(optimal) values of pj with respect to the H(z) observational data are achieved, if
the χ2 function, [33] – [40]

χ2
H(p1, p2, . . . ) =

NH∑
j=1

[
H(zj, p1, p2, . . . )−Hobs(zj)

σj

]2

, (13)

reaches its minimum in this parameter space. Here NH is the number of observati-
ons, Hobs(zj) are observational data with errors σj, H(zj, p1, p2, . . . ) are theoretical
values of Hubble parameter (5) calculated from Eqs. (8) or (12) for the ΛCDM or
wCDM model respectively.

In the next section, we shall demonstrate that the analysis of only Hubble
parameter data and the function χ2

H is not reliable enough for these cosmological
models. We have to include into consideration the Type Ia supernovae data.

Observations of Type Ia supernovae were the first evidence of accelerated ex-
pansion of the Universe, they play an essential role in striking progress of cosmology
during the last two decades [43, 44]. Supernovae are stars which explode with rele-
ase of huge energy and expanding their outer shell. These objects are classified in
correspondence with their spectrum and time evolution of their brightness [45]. The
most interesting class of them is Type Ia supernovae, which are usually considered
as standard candles in the Universe, because we can determine their epoch (reds-
hift z) and the distance (luminosity distance DL) to these objects. The luminosity
distance [33] – [40]

DL(z) =
c (1 + z)

H0

Sk

(
H0

z∫
0

dz̃

H(z̃)

)
(14)

depends on the sign k of spatial curvature of the FLRW Universe (1) via the ex-
pression

Sk(x) =


sinh

(
x
√

Ωk

)/√
Ωk, Ωk > 0,

x, Ωk = 0,

sin
(
x
√
|Ωk|

)/√
|Ωk|. Ωk < 0,

Here Ωk is the curvature fraction (9).
In papers [32] – [39] we used the Union 2.1 table [46], containing 580 observations

of Type Ia supernovae (SNe Ia), however in Ref. [40] and in this paper we use the
Pantheon sample [41], that is the latest (2017) extended SNe Ia data set, containing
information about NSN = 1048 Type Ia supernovae. This information includes the
redshift values z = zi of objects, their luminosity distance moduli (logarithms of
the luminosity distance DL)

µi = µ(DL) = 5 lg
(
DL/10pc

)
,

and the NSN ×NSN covariance matrix CSN for these data points.
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The observed values µi = µobs
i with the inverse matrix C−1

SN from the Pantheon
sample [41] and the theoretically deduced Hubble parameter H(z) = H(z, p1, . . . )
(8) or (12) let us calculate the functions DL(z) (14), µ(z) = µth(z, p1, . . . ) and the
corresponding χ2 function for SNe Ia data [40]:

χ2
SN(p1, . . . ) = min

H0

NSN∑
i,j=1

∆µi

(
C−1

SN

)
ij

∆µj, ∆µi = µth(zi, p1, . . . )− µobs
i , (15)

Here p1, p2, · · · = Ω0
m,Ωk, . . . are free parameters of the ΛCDM or wCDM models.

To eliminate data errors, in the formula (15) we should minimize (marginalize) over
H0, so the resulting function χ2

SN(Ω0
m, . . . ) does not depend on H0.

In the next section we study how the ΛCDM or wCDM models describe the
unified set of observational data, including observation of the Hubble parameter
H(z) and Type Ia supernovae. The results are determined by the χ2 function, that
is the sum of the functions (13) and (15):

χ2
H+SN(p1, . . . ) = χ2

H(p1, . . . ) + χ2
SN(p1, . . . ). (16)

In this paper (unlike Refs. [33] – [40]) we do not include into consideration the
baryon acoustic oscillations (BAO) to avoid a correlation with 26 H(z) data points
obtained with BAO method.

However, in accordance with Refs. [37, 40] we investigate in Sect. 5 changes
in model predictions from observational manifestations of cosmic microwave back-
ground radiation (CMB). We use the CMB observational parameters [42]

x =
(
R, `A, ωb

)
, R =

√
Ω0

m

H0DM(z∗)

c
, `A =

πDM(z∗)

rs(z∗)
, ωb = Ω0

bh
2, (17)

related with the photon-decoupling epoch z∗ = 1089.90 ± 0.25 [1, 3] (unlike the
SNe Ia and H(z), measured for 0 < z ≤ 2.36). Here DM(z) = DL(z)

/
(1 + z),

h = H0/[100 kms−1Mpc−1], the comoving sound horizon rs at z = z∗ is calculated
as

rs(z) =
1√
3

∫ 1/(1+z)

0

da

a2H(a)
√

1 +
[
3Ω0

b/(4Ω0
r)
]
a
.

In these calculations at high redshifts, radiation is essential, so we use the fixed
radiation-matter ratio Xr = Ω0

r/Ω
0
m in the form (11). We consider the current

baryon fraction Ω0
b as the nuisance parameter and marginalize over ωb = Ω0

bh
2 the

following χ2
CMB function:

χ2
CMB = min

ωb

∆x · C−1
CMB

(
∆x
)T
, ∆x = x− xPl . (18)

We use the data [42]

xPl =
(
RPl, `Pl

A , ω
Pl
b

)
=
(
1.7448± 0.0054, 301.46± 0.094, 0.0224± 0.00017

)
(19)

extracted from Planck collaboration [2] with free amplitude for the lensing power
spectrum. The covariance matrix CCMB = ‖C̃ijσiσj‖ and other details are described
in Refs. [37, 40] and [42].
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.4 Analysis of H(z) and SNe Ia data

We begin our investigation from the analysis of the Hubble parameter data H(z)
and the corresponding function (13) χ2

H(Ω0
m, . . . ), depending on Ω0

m,Ωk, H0 for the
ΛCDM model and on Ω0

m,Ωk, H0, w for the wCDM model.
In Fig. 1 we compare contour plots of χ2

H for these two models for all NH = 57
Hubble parameter data points and for NH = 31 data points from cosmic chronome-
ters in the Ω0

m−Ωk plane; more precisely, we draw the contour plots at 1σ (68.27%),
2σ (95.45%) and 3σ (99.73%) confidence level for the two-parameter distributions

χ2
H(Ω0

m,Ωk) =

 min
H0

χ2
H(Ω0

m,Ωk, H0), for ΛCDM,

min
H0,w

χ2
H(Ω0

m,Ωk, H0, w), for wCDM.
(20)

In the top-left panel of Fig. 1 we show and compare these contour plots (thick
lines) for both models for the case NH = 57. In the bottom-left panel we consider
the case NH = 31 (thick lines) and compare them from the previous contours for
NH = 57 (thin lines with the same colors).

The corresponding one-parameter distributions χ2
H(Ω0

m) and χ2
H(Ωk) (where χ2

H

is minimized over all other parameters) are shown at the right panels of Fig. 1.
In the contour plots in Fig. 1 the positions of χ2

H minima are shown as the red
circle and brown triangle for the ΛCDM model with NH = 57 and 31 respectively,
and as the blue pentagram or green hexagram for the wCDM model. These colors
and marks will also be used below. One can see the large difference between the
positions of these minima points, especially for Ω0

m with NH = 57 (observed in the
top-left and bottom-right panels) for which the optimal values are: Ω0

m ' 0.217 for
the ΛCDM and Ω0

m ' 0.081 for the wCDM model. The last value strongly differs
from modern estimates of this parameter Ω0

m ' 0.3 [2, 3].
In addition, if we use only the Hubble parameter H(z) data, the optimal values

of the curvature fraction Ωk in 3 considered cases of models and NH are larger
than 0.3, but this value is negative for the ΛCDM with NH = 31. The positive
(Ωk > 0) 1σ domains for both models in the case NH = 57 essentially exceed
the close to zero limits Ωk = 0.0007 ± 0.0037, coming from the latest multivariate
estimations [3]. For the case NH = 31 both model predict the best fitted values Ωk

with different signs (strongly separated), however these estimates do not exclude
Ωk ' 0 values because of large 1σ errors (see Table 1): Ωk = −0.13+0.72

−0.54 for the
ΛCDM and Ωk = 0.325+0.367

−1.96 for the wCDM model with NH = 31.
On can see also the non-standard behavior of the contour plots (and the graph

χ2
H(Ωk) in the bottom-left panel) in Fig. 1 for the wCDM model, these lines are

bent. This effect appears, because at some points of the Ω0
m − Ωk plane, when

we fix Ω0
m and Ωk, the function χ2

H of two remaining parameters H0, w can have
two local minima, and we should chouse the minimal one from them (coinciding
with the global minimum). This “competition” between local minima is seen in
Fig. 1 at points, where we “switch” from one local minimum to another during the
minimization procedure in the expression (20) for χ2

H(Ω0
m,Ωk). This effect should
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Figure 1: Contour plots of χ2
H(Ω0

m,Ωk) with NH = 57 (the top-left panel) and

with NH = 31 (the bottom-left panel) at 1σ, 2σ and 3σ CL for the ΛCDM (filled

contours) and wCDM models, the correspondent one-parameter distributions are

presented in the right panels.

be carefully taken into account. Note that the ΛCDM model has no such a behavior
(see Fig. 1).

For the wCDM model in Fig. 2 we consider (filled) contour plots for the two-
parameter distribution in the H0 − w plane: χ2

H(H0, w) = min
Ω0

m,Ωk

χ2
H . Here we use

the same notation. However, predictions of the ΛCDM model in this plane are
contracted to the w = −1 level line. In the right panels we show the one-parameter
distributions χ2

H(w) and χ2
H(H0) (minimized over all other parameters) and the

correspondent likelihood functions, in particular,

LH(H0) ∼ exp(−χ2
H(H0)/2). (21)

We use these functions for estimating 1σ errors, they are tabulated below in Table 1
with the best fitted values of the model parameters and minimums of χ2

H (they are
28.82 for the ΛCDM and 26.05 for the wCDM model for NH = 57).



10 G. S. Sharov, E. S. Sinyakov. Cosmological models

H
0

 w

 

 

60 70 80 90 100

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5 N
H

=57

N
H

=31

−5 −4 −3 −2 −1

15

20

25

30

 w

χ H2

 

 

w,57
w,31

−5 −4 −3 −2 −1
0

0.2

0.4

0.6

0.8

1

 w

 L

 

 

w,57
w,31

60 70 80 90 100

15

20

25

30

 H
0

 

 

w,57
w,31
Λ,57
Λ,31

60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

 H
0

 

 

wCDM,57
wCDM,31
ΛCDM,57
ΛCDM,31
Planck18
R19

Figure 2: Contour plots of χ2
H(H0, w) for the wCDM model with NH = 57 (filled

contours) and with NH = 31 (green contours), one-parameter distributions and

likelihood function LH(w) and LH(H0) are shown in the right panels. In the bottom-

right panel the vertical bands refer to H0 estimates of Planck 2018 [3] (yellow) and

HST [5] (green, labeled as R19).

In the bottom-right panel of Fig. 2 we draw the vertical bands describing cor-
respondingly the H0 estimates of Planck 2018 [3] and HST [5] (labeled here and
below as Planck18 and R19). These bands and 1σ estimates in different models
are reproduced below in Fig. 3 in the whisker plots. One can see that for the
case with NH = 31 Hubble parameter data points the ΛCDM χ2

H prediction (the
best fitted value) H0 = 69.0+5.15

−5.5 is close to Planck18, and the wCDM estimation
75.3+24.5

−10.8 corresponds to R19, so it seems (at the first glance) that we solve the H0

tension problem, if we just switch from the ΛCDM to wCDM predictions under
these assumptions (only χ2

H with 31 H(z) data points).

However, other optimal values of model parameters under the mentioned as-
sumptions (see Table 1), in particular, the wCDM (NH = 57) estimations Ωk =
0.372+0.149

−0.13 are far beyond the observational limits [2, 3].

Moreover, the best fitted χ2
H values in the case NH = 57: H0 = 65.25+2.8

−2.9 from
the ΛCDM and 84.2+21.8

−14.05 from the wCDM estimations have more larger spread
than the tension between Planck18 and R19. These estimations are also illustrated
in the whisker diagram in Fig. 3, corresponding the bottom-right panel of Fig. 2 in
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Table 1: Optimal values and 1σ estimates of model parameters for H(z) data

Model Data NH minχ2 H0 Ω0
m Ωk w

ΛCDM H(z) 31 14.44 69.0+5.15
−5.5 0.360+0.204

−0.233 −0.13+0.72
−0.54 −1

wCDM H(z) 31 14.09 75.3+24.5
−10.8 0.170+0.425

−0.134 0.325+0.367
−1.96 −2.30+2.20

−3.22

ΛCDM H(z) 57 28.82 65.25+2.8
−2.9 0.217+0.036

−0.040 0.305+0.209
−0.18 −1

wCDM H(z) 57 26.05 84.2+21.8
−14.05 0.081+0.054

−0.035 0.372+0.149
−0.13 −3.57+1.49

−1.62

comparison with the results, determined by the function χ2
H+SN.

60 65 70 75 80 85

 H(z)  data, χ2
H

:

ΛCDM,  N
H

= 31

ΛCDM,  N
H

= 57

wCDM,  N
H

= 31

wCDM,  N
H

= 57

 H(z) + SNe:

ΛCDM,  N
H

= 31

wCDM,  N
H

= 31

ΛCDM,  N
H

= 57

wCDM,  N
H

= 57

Planck18 R19

 H
0

Figure 3: Whisker plots for χ2
H , χ2

H+SN and 2 models with different NH in compa-

rison with Planck18 and R19 H0 estimates.

Keeping in mind the non-standard estimations of H0, Ωk and behavior in the
Ω0

m − Ωk and H0 − w planes, one may conclude, that the Hubble parameter ob-
servations H(z) alone do not give an adequate picture of the ΛCDM and wCDM
cosmology during 0 ≤ z ≤ 2.36. Hence, we should add other observational data
described above in Sect. 3, in particular, SNe Ia data [41].

We consider further the H(z) with SNe Ia data set described by the function
χ2
H+SN = χ2

H + χ2
SN (16): the results are depicted in Fig. 4, where we compare the

ΛCDM and wCDM models in 6 planes with contour plots (H0 − Ω0
m, H0 − Ωk,

Ω0
m − Ωk, Ω0

m − Ωk, etc.) and in 4 panels with one-parameter likelihood functions
LH+SN(pj) of the type (21). In all panels the blue filled contours and blue lines
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Figure 4: Contour plots and one-parameter distributions of χ2
H+SN (H(z) and the

Pantheon SNe Ia data) for the ΛCDM and wCDM models.

correspond to χ2
H+SN for the wCDM model with NH = 57, colors and labels of

minima points for other variants are the same as in Figs. 1 and 2.

We use the one-parameter likelihood functions LH+SN to calculate the best fitted
values of model parameters and corresponding error bands; they are presented in
Table 2.

One may observe in Fig. 4 that the Pantheon SNe Ia data, included in our ana-
lysis, significantly change the best fitted values for all parameters and all variants of
the models (supporting the above mentioned irrelevance of only Hubble parameter
data). These values for χ2

H+SN are tabulated in Table 2. In particular, the exotic
χ2
H estimates for the wCDM (NH = 57) model Ω0

m = 0.081+0.054
−0.035, w = −3.57+1.49

−1.62

in the case χ2
H+SN return to their “normal” values (corresponding to recent esti-

mates [2, 2]): Ω0
m = 0.252+0.048

−0.061, w = −0.954+0.124
−0.33 . The similar changes (up to
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Ω0
m = 0.322+0.066

−0.069) take place also for the wCDM model with NH = 31; in this
case the optimal wCDM value w = −0.988+0.166

−0.32 appears to be extremely close the
ΛCDM limit w = −1 and the best fitted estimates of all parameters practically
coincide for these two models.

Fig. 4 also demonstrates the large difference between the Ω0
m estimates for the

cases NH = 31 and 57. The similar difference may be seen for the Hubble parameter
H0, however the whisker plot in Fig. 3 shows, that it is essentially less than for the
χ2
H data only. Thus, one may conclude, that for the Hubble parameter plus SNe Ia

data (χ2
H+SN) in all 4 considered variants of the ΛCDM and wCDM models, only

Planck18 estimates of H0 are supported; all models are in tension with the HST
(R19) data.

.5 Additional analysis of CMB data

In this section we add the cosmic microwave background radiation (CMB) data
in the form χ2

CMB (18), (19) [42] to the previous H(z) and SNe Ia data sets and
analyze the resulting χ2 function

χ2
tot = χ2

H + χ2
SN + χ2

CMB. (22)

The results of χ2
tot-based calculations are presented in Fig. 5 and in Table 2.

One can expect from the previous papers [37, 40] (and will see in Fig. 5) that
the included CMB data strongly change estimations for model parameters and
especially for their error boxes. In particular, error boxes for Ω0

m, calculated from
χ2

tot, are essentially more narrow because of small errors σi in the CMB priors (19)
of the values (17), where the parameter R is proportional to

√
Ω0

m.
In Fig. 5 and in Table 2 we can observe, that the predicted from χ2

tot (H + SNe
Ia + CMB) error bands are strongly contracted (in comparison with χ2

H+SN) not
only for Ω0

m (where the error box is of order ∆Ω0
m ' 0.0017), but also for Ωk, where

∆Ωk ' 0.0017 for the ΛCDM and ∆Ωk ' 0.004 for the wCDM model. One should
note also, that the best fitted estimates of Ω0

m with the CMB data are rather close
in the range 0.282 < Ω0

m < 0.283 for all 4 considered variants. For Ωk the optimal
values lie in the range 0.0055 ≤ Ωk ≤ 0.011 and slightly differ for the ΛCDM and
wCDM models.

However, for the Hubble constant the influence of the CMB data is not so
striking: the H0 error bands for χ2

tot appear to be about 1.5 times diminished in
comparison with the case.

Estimations of the Hubble constant H0 (shown in the top-left panel of Fig. 5)
and the corresponding whisker plot with 1σ error boxes are presented in Fig. 6.
Here we also compare the results for H + SNe Ia + CMB data with the previous
estimates from the function χ2

H+SN. One can note that the CMB data almost do not
change the best fitted H0 estimates (with the mentioned contraction of their error
boxes) for the wCDM model, but the H0 estimates for the ΛCDM model appear
to be enlarged. However, this growth is too small for describing the HST (R19)
estimations, that could be a solution of the H0 tension problem.



14 G. S. Sharov, E. S. Sinyakov. Cosmological models

0.28 0.285

1

0 0.01 0.02

1

Ω
k

0 0.01 0.02

−1.1

−1

−0.9

−0.8
0.28 0.285

0

0.01

0.02

Ω
m
0

0.28 0.285

−1.1

−1

−0.9

−0.8

−1.1 −1 −0.9 −0.8

1

 w
64 66 68 70 72 74

1
 L

Ω
m0

64 66 68 70 72 74

0.28

0.285

Ω
k

64 66 68 70 72 74

0

0.01

0.02

 H
0

 w

64 66 68 70 72 74

−1.1

−1

−0.9

−0.8

H(z) + SNe + CMB:

wCDM, N
H

= 57

wCDM, N
H

= 31

ΛCDM, N
H

= 57

ΛCDM, N
H

= 31

Figure 5: Contour plots and one-parameter distributions of χ2
tot (H+SNe Ia+CMB

data) for the ΛCDM and wCDM models.

The most successful variant for solving this problem is to consider the flat case
(k = 0) of the ΛCDM or wCDM models. This variant is the particular case of these
models, if we just suppose Ωk = 0 in our calculations. The corresponding result
H0 = 70.87+1.63

−1.62 km /(s·Mpc) for the flat wCDM model with NH = 31 is shown in
Fig. 6 with black color. The 1σ band for this variant is very close to R19 estimates,
however only the corresponding 2σ band (shown as the dashed line) reaches the
R19 range.

.6 Conclusion

In this paper we considered two cosmological models ΛCDM and wCDM in confron-
tation with different observational data: the Hubble parameter H(z) estimations
(31 data points from cosmic chronometers and the extended sample with 57 data
points), the Pantheon sample Type Ia supernovae data [41] and CMB data in the
form (18), (19) [42]. In this study we, in particular, kept in mind a possibility to
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alleviate the Hubble constant tension between the Planck [1, 2, 3] and HST [4, 5]
estimations of H0.

66 68 70 72
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0
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 H(z) + SNe + CMB

 

 

wCDM, 57
ΛCDM, 57
wCDM, 31
ΛCDM, 31
flat wCDM, 31
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Figure 6: Likelihoods for χ2
tot (H+SNe Ia+CMB) with the correspondent whisker

plot (with the previous case χ2
H+SN) in comparison with Planck18 and R19 H0

estimates. The dashed line describes the 2σ error band, solid thick lines correspond

to 1σ estimates.

We have shown that the H0 tension can be easily explained (with simple “swit-
ching” from the ΛCDM to wCDM model), if we consider only the H(z) data via
the χ2

H function (13) (see Figs. 2, 3). However, this approach with the extremely
poor set of observations is not acceptable, because it predicts extraordinary values
of model parameters in Table 1.

The model predictions become reliable, when we include into consideration the
SNe Ia [41] and CMB data [42]. The resulting best fitted values of model parameters
with 1σ errors for the χ2 functions χ2

H+SN (16) and χ2
tot = χ2

H+SN + χ2
CMB (22) are

presented in Table 2. The corresponding results for Hubble constant H0 are shown
in Fig. 6; they essentially depend on the choice of filters inside the models (for
example, if we fix w = −1 or Ωk = 0) or filters applied to observations.

If we concentrate on the H0 tension problem, we may conclude that the most
successful scenario for its alleviation is the wCDM model with the maximal data
set (for χ2

tot = χ2
H+SN+CMB): the best fitted value H0 = 67.52+0.96

−0.95 km s−1Mpc−1 for
NH = 57 almost coincides with the Planck 18 estimate [3]; on the other hand, if
we accept the flat variant of this model (fix Ωk = 0) we obtain H0 = 70.87+1.63

−1.62

km s−1Mpc−1 for NH = 31, which is very close to the HST estimation [5] (the green
band in Fig. 6), but it is not large enough and lies outside the 1σ confidence level
(only 2σ bands have intersection).

One may conclude that the wCDM model has considerable achievements, but it
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Table 2: The best fitted values and 1σ estimates of model parameters for H(z)+SN

and CMB data

Model Data NH minχ2 H0 Ω0
m Ωk w

ΛCDM H+SN 31 1072.76 68.75+2.01
−1.98 0.322+0.066

−0.068 −0.035+0.176
−0.167 −1

wCDM H+SN 31 1072.76 68.76+2.41
−2.37 0.322+0.066

−0.069 −0.036+0.290
−0.258 −0.988+0.166

−0.32

ΛCDM H+SN 57 1088.76 67.07+1.30
−1.29 0.242+0.027

−0.029 0.170+0.096
−0.092 −1

wCDM H+SN 57 1088.70 67.32+1.66
−1.72 0.252+0.048

−0.061 0.108+0.30
−0.251 −0.954+0.124

−0.330

ΛCDM H+SN+CMB 31 1074.29 69.72+1.60
−1.59 0.2829+0.0017

−0.0018 0.0056+0.0017
−0.0017 −1

wCDM H+SN+CMB 31 1073.20 68.88+1.77
−1.78 0.2826+0.0017

−0.0018 0.009+0.004
−0.004 −0.945+0.051

−0.053

ΛCDM H+SN+CMB 57 1092.09 68.89+0.45
−0.44 0.2426+0.0017

−0.0017 0.0055+0.0017
−0.0017 −1

wCDM H+SN+CMB 57 1089.44 67.52+0.96
−0.95 0.2822+0.0017

−0.0018 0.011+0.004
−0.004 −0.922+0.048

−0.048

is not successful enough for conclusive solving the H0 tension problem on the base
of the mentioned observational data. For this purpose we should investigate some
its extensions or other cosmological scenarios [8] – [28].
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