
http://mmg.tversu.ru ISSN 2311-1275

MMG
Mathematical Modelling

and Geometry
Volume 7, No 3, pp. 1 – 8 (2019) doi:10.26456/mmg/2019-731

Algorithm of the Cyclic-Order Graph Program
(Implementation and Usage)

Štefan Berežný1,a and Ján Buša Jr.2,3,b

1 Departmet of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice, Němcovej 32, 042 00 Košice, Slovakia
2 Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6,
141980 Dubna, Moscow region, Russia
3 Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice,
Slovakia

e-mail: a stefan.berezny@tuke.sk, b busa@jinr.ru

Received 21 December 2019. Published 30 December 2019.

Abstract. C++ Implementation of the Cyclic-Order Graph Algorithm is presen-
ted together with the source code. This program helps in determination of crossing
numbers for join products of graphs with paths of given numbers of vertices ne-
cessary for the proofs in the Graph Theory. Comparison with MATLAB (GNU
Octave) is provided together with outlooks for the future development.

Keywords: crossing number, cyclic permutation, join product, paths

MSC numbers: 05C12, 05C62, 05C85, 68W40

This work was partially supported by JINR LIT in Dubna, Russia, which allowed us access
to the computing resources of the HybriLIT cluster [1].

c©The author(s) 2019. Published by Tver State University, Tver, Russia

https://doi.org/10.26456/mmg/2019-731


2 Š. Berežný and Ján Buša Jr.

.1 Introduction

One of important topics in the field of Graph Theory is a question of graphs cros-
sing number, i.e., the minimal number of crossings needed, when constructing a
graph with given properties. Such problem can arise for instance when designing
motherboard where we connect electronic components (graphs vertices) by conduc-
tors (graphs edges). Naturally, we want to avoid crossing of individual conductors
and to do this effectively, we need to know minimal number of crossings in such
situation.

From the mathematical point of view we solve the problem of determining of
crossing number of join product of the graph G with the discrete graph Dn and
the path Pn on n vertices. One of most straightforward approaches when trying to
prove some estimate of the crossing number was presented in [2–4]. The proof of
crossing numbers of such graphs with respect of their ideas is useful identify the
permutations whose distance from given two permutations in the graph have some
prescribed value. While this is rather easy to do by hand for a small size of the
input graph (for n = 4 vertices we get (n − 1)! = 3! = 6 cyclic permutations or
for n = 5 vertices we get 30 cyclic permutations), this task gets tiresome for larger
graphs as the number of tested permutations grows factorialy (see [5, 6]).

In [7] we have provided detailed description of the Cyclic-Order Graph Algo-
rithm, which can help people trying to make proofs in the field of Graph Theory
by determining the number of permutations whose distance from two given per-
mutations is lower than some required number (and identify those permutations).
As a side product this algorithm also gives user information about the maximal
distance in some given graph. During testing this algorithm in MATLAB (GNU
Octave), as a most important downside was slow execution, especially in the be-
ginning when matrix of distances between individual permutations needed to be
calculated. Therefore we have decided to implement this algorithm in C++ to
speed up the calculation and also to allow the batch processing of request, which
could eventually lead to automatic proofs of crossing number theorems or parts of
them.

In Section 2 we briefly describe the details of implementation of the program to-
gether with necessary steps to execute it. Section 3 describes interactive mode when
working with program. Section 4 introduces batch processing of data. In Section 5
we show some performance results when compared to the original MATLAB (GNU
Octave) implementation and outline possibilities for the future development of this
program.

.2 Program Overview

Whole C++ implementation of the Cyclic-Order Graph Algorithm (short COGA
or coga as a program name) closely follows [7]. Starting from main.cpp, command
line parameters are parsed first and it is decided, whether to provide user with
simple help or create demo batch program (both leading to termination of the



Algorithm of the Cyclic-Order Graph Program 3

application) or to start the coga itself in manual (see Section 3) or batch/automatic
(see Section 4) mode.

To speed-up and save memory several approaches have been used. Most signi-
ficantly we save list of possible cyclic permutations in files called InputPermuta-
tions-n.txt, n being the size of the problem. If not provided, the file is created.
This allows for faster program start-up and also to ensure, that results obtained
between launches of coga will remain consistent. User also has possibility to save
the matrices of adjacency (AdjMat-n.txt) and distances (DistMat-n.txt), but
this is not done automatically as the size of these matrices grows very fast with
increasing value of n. Also we have used bit-set arrays to store adjacency matrix
and for calculation of distances between permutations. This led to faster calcu-
lation time and 8-fold decrease of memory used for storing these large matrices.
Also using dynamic_bitset we were able to allow user to select size of problem
interactively on the run-time and we were not forced to set fixed size of problem on
the compile-time.

To make the compilation of the program easier and to allow for easy addition
of tools, s.a. MPI or CUDA later we have decided to use CMake tool-chain. Prere-
quisites: C++ compiler supporting C++11, CMake (minimal version 2.8.12), and
part of the boost library (trim.hpp, trim_all.hpp, dynamic_bitset.hpp). All
these have to be installed and paths to them have to be set.

Following commands have been tested on Fedora 27 based platform but should
work without problem on MacOS or Windows based configurations too. Maybe
steps needed to configure CMake will differ. Unpack directory with source files.
Enter the directory created and create inside the directory build and enter it.
Write the command:
cmake -DCMAKE_INSTALL_PREFIX=../run -DCMAKE_BUILD_TYPE=Release ..
This will create directory run one level higher (same level as directory build) to
which programs executable will be copied after successful compilation with compi-
lation flags set to optimize for speed (release version of program). You can modify
this path to suit your needs. Now execute command: make install. This crea-
tes executable coga and copies it to the directory ../run/. Now enter the newly
created directory run/ (starting from the level where you have created the build
directory) and you can launch the program. There are 4 different ways to launch
the program depending on the required outcome:

1. coga — starts manual (interactive) mode, described in Section 3.

2. coga --help or -h/-help — displays help message and terminates.

3. coga fileName1 fileName2 ... — starts batch mode, where fileName* are
file names of files describing what the program has to do. All files provided
from command-line are parsed in order they were provided on the command-
line. Usage of this mode is described in Section 4.



4 Š. Berežný and Ján Buša Jr.

4. coga -demo— produces example (demo) file for batch mode (Section 4) called
batchDemo.txt and terminates.

.3 Manual Mode

Manual mode is implemented in RunProgramInteractively.cpp. User is first as-
ked to provide size n of the problem he wants to work with. This size has to be in-
side the bounds (inclusively) nLower and nUpper defined in ListOfFunctions.hpp,
currently 3 and 9. After this step, file with all possible cyclic permutations called
InputPermutations-n.txt is loaded (or created if missing), adjacency (neighbors)
matrix is created and matrix of distances between each permutations is calculated
(or loaded if any of matrices is provided). User is then brought to interactive menu,
from which he can review all this data — list of cyclic permutations, adjacency ma-
trix, distances matrix, identify all permutations with given maximal distance from
two given permutations and save requested information to output files. If user
wants to change size n, he needs to terminate the application and start again.

.4 Batch Mode

Batch mode implemented in RunProgramInBatch.cpp is intended for automatic
obtaining of larger quantity of information and for simplifying of repetitive tasks.
Program reads files whose names were provided on the command line when starting
program coga line by line and executes commands from these lines. Each line may
contain only one command, starting from the first column of the line. Spaces in
the beginning of the line are not allowed. Lines starting with the sign # and lines
not starting with command are considered comments. In the case, user provided
invalid command, either with wrong arguments or in incorrect order (e.g. asking to
print data when no problem size was set), warning is issued with the file name of
batch file and line number on which the error occurred. To obtain demo batch file,
one needs to issue on the command-line command: coga -demo. List of currently
implemented commands is in the Table 1.

.5 Performance and Conclusions

The first implementation of the algorithm using MATLAB (GNU Octave) seemed
sufficient for our needs and it worked fast enough for small dimensions of problem
(n = 3, 4, 5). With growing n the calculation time (calculation of adjacency matrix
and matrix of distances) increased rapidly. We were able to speed-up the calculation
of matrix of distances (containing matrix multiplication) by using bit arrays instead,
which helped little but the calculation was still slow. Therefore we decided to switch
to C++. Comparison of calculation times depending on the size n of the problem
and on the implementation itself is in the Table 2.



Algorithm of the Cyclic-Order Graph Program 5

Table 1: List of commands implemented in the coga for batch processing.
0 probSize Set size of problem (n) to value given by probSize. It has to

be inside the given boundaries.
1 fileName Set name of output file to fileName and open it. If any other

file was already opened, it will be closed before this command is
executed. Output of all subsequent commands will be written
to this file, except for the adjacency matrix (written to the
file AdjMat-n.txt) and matrix of distances (written to the file
DistMat-n.txt). The content will be appended to the file, if
such file already exists.

2 fileName Same as in command ‘1 fileName’ with the exception, that file
will be opened as new (older information will be overwritten).

3 Write adjacency matrix to file. Each row of the file holds one
row of the lower sub-diagonal triangle of adjacency matrix.

4 Write maximum distance to file.
5 Write matrix of distances to file. Each row represents one row

of the lower sub-diagonal triangle of distances matrix.
6 p1 p2 DIST Writes to file indices of all permutations whose distance from

permutations p1 and p2 is less than or equal to DIST.
7 p1 p2 DIST Same as 6 p1 p2 DIST but with more detailed information.

Not only indices of permutations are written to output but
also the permutations themselves are printed.

8 text text is written to the output file. All spaces before and after
text are removed, newline character at the end of line is added
automatically.



6 Š. Berežný and Ján Buša Jr.

Table 2: Comparison of calculation times and complexity for different implementa-
tions of cyclic permutation algorithm (multiple runs averaged).

matrix of adjacency matrix of distances
n perm. comp. MAT C++ lda mul. MAT C++ ldd

3 2 15 0.002 0.00008 0.000099 1 0.001 0.00003 0.000053
4 6 276 0.011 0.00010 0.000112 2 0.003 0.00004 0.000068
5 24 7 140 0.165 0.00032 0.000145 4 0.066 0.00016 0.000090
6 120 258 840 5.688 0.00521 0.001138 6 2.730 0.00173 0.000972
7 720 12 698 280 302.832 0.08817 0.013004 9 166.168 0.08733 0.009630
8 5040 812 831 040 20 988.000 5.46466 0.438866 12 18 512.000 13.59132 0.434627

n – problem size
perm. – number of cyclic permutations for given problem size is (n− 1)!

comp. – number of permutations comparisons during creation of adjacency matrix
MAT– adjacency or distances matrix creation time (in seconds) in MATLAB
C++–adjacency or distances matrix creation time (in seconds) in C++
lda – time of adjacency matrix load from file in C++ (in seconds)
mul – number of (n− 1)!× (n− 1)! matrices squarings needed to calculate distances
ldd – time of distances matrix load from file in C++ (in seconds)

One can see, that the order of speed-up when comparing C++ and MATLAB
(GNU Octave) implementation is from about 1000 up to 3800, depending on the size
of the problem. Obviously, even better results are obtained when using adjacency
and distances matrices stored on the computer (skipping the calculations) but this
comes at the cost of large files stored (2×24MB for n = 8 and about 2×1.8GB for
n = 9).

For now we consider n = 9 limit for C++ as the computational time and memory
necessary to store all information grow fast. Calculation of the adjacency matrix
takes about 550 s and matrix of distances needs 16 multiplications and 9742 s on
our testing configuration using Intel Core i7-6700 CPU running at 3.4GHz. Load of
saved configurations takes 28 s in the case of adjacency matrix and 40 s for matrix
of distances. With such large files, data access starts to play role and we were
using only traditional rotational HDD. In the future we would like to implement
improved version of the program which would use some of the parallel techniques
(MPI and/or CUDA or OpenCL) to speed-up the calculation even further and we
would like to store some information in local files in some kind of compressed form
to be able to work with larger number of permutations.

The Cyclic-Order Graph Algorithm and the presented software (in C++ and
MATLAB) can be seen used in the following articles [8–11]. In these articles,
the authors use the software to prove theorems about crossing numbers of graphs.



Algorithm of the Cyclic-Order Graph Program 7

Using the presented software, they generated the distances between appropriate
permutations (and inverse permutations), from which they created tables for the
lower bounds of the crossing numbers of graphs. These tables form the basis for
further progress on the proofs of the theorems in mentioned articles.

The software we presented in this article can be downloaded from the web site of
the Department of Mathematics and Theoretical Informatics, Faculty of Electrical
Engineering and Informatics, Technical University of Košice can be downloaded
from the following link:

http://web.tuke.sk/fei-km/en/coga
This website also describes how to use and install this software in the Slovak and
English languages.

.References

[1] Adam Gh. et al IT-ecosystem of the HybriLIT heterogeneous platform for high-
performance computing and training of IT-specialists. In International Confe-
rence “Distributed Computing and Grid-technologies in Science and Educa-
tion” 2018, Edited by Korenkov V., Nechaevskiy A., Zaikina T., and Mazhitova
E., CEUR Workshop Proceedings, Volume 2267 (2018), pp. 638–644

[2] Kleitman. D.J. The crossing number of K5,n. Journal of Combinatorial Theory
1971, 9, pp. 315–323

[3] Woodall D.R.. Cyclic-order graphs and Zarankiewicz’s crossing-number con-
jecture Journal of Graph Theory 1993, 17 (6), pp. 657–671

[4] Zarankiewicz K. On a problem of P. Turán concerning graphs Fundamenta
Mathematicae 1954, 41, pp. 137–145

[5] Li B., Wang J., and Huang Y. On the crossing number of the join of some
5-vertex graphs and Pn, International Journal of Mathematical Combinatorics
2008, 2, pp. 70–77

[6] Hernández-Vélez C., Medina C., and Salazar G. The optimal drawings of K5,n.
The Electronic Journal of Combinatorics 2014, 21 (4), 29., Paper 4.1.

[7] Berežný Š., Buša J. Jr., and Staš M. Software solution of the algorithm of the
cyclic-order graph. Acta Electrotechnica et Informatica 2018, 18 (1), pp. 3–10

[8] Berežný Š. and Staš M. On the crossing number of the join of five vertex graph
G with the discrete graph Dn. Acta Electrotechnica et Informatica 2017, 17 (3),
pp. 27–32

[9] Berežný Š. and Staš M. Cyclic permutations and crossing numbers of join
products of symmetric graph of order six. Carpathian Journal of Mathematics
2018, 34 (2), pp. 143–155

http://web.tuke.sk/fei-km/en/coga


8 Š. Berežný and Ján Buša Jr.

[10] Staš M. On the crossing number of the join of the discrete graph with one graph
of order five, Mathematical Modelling and Geometry 2017, 5 (2), pp. 12–19

[11] Staš M. Cyclic permutations: Crossing numbers of the join products of graphs,
In 17th Conference on Applied Mathematics (Aplimat 2018), Proceedings, pp.
979–987


	Introduction
	Program Overview
	Manual Mode
	Batch Mode
	Performance and Conclusions

