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Abstract. In this paper, we developed a mathematical model that allows us to
study the process of homogeneous cavitation in liquids, interfacial mass trans-
fer and the dynamics of cavitation cavities with a change in fluid pressure. A
numerical simulation was performed, which made it possible to determine the de-
pendence on time and spatial coordinates of the parameters of the liquid phase,
temperature and pressure of the vapor phase, concentration and size of bubbles.
A program is proposed that allows the described numerical simulation. A number
of conclusions were made about the effect of the frequency of external influence on
the liquid on the intensity of the formation of cavities in the liquid and calculated
the amplitudes of oscillations of cavitation cavities.
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.1 Introduction

When a liquid is heated at a constant pressure or when the pressure is lowered at
a constant temperature, it is possible to achieve a state in which vapor, gas and
vapor-gas bubbles (cavities) become visible and begin to grow. Such bubbles can
grow at a moderate rate (if its growth is determined by the diffusion of dissolved
gases into the bubble), or explosively (if the growth is due to evaporation of the
surrounding liquid into the bubble). This process is called cavitation.

Thus, cavitation is the growth of a bubble (cavern), due to the dynamic pressure
drop at a constant temperature. Cavitation includes a number of phenomena from
the inception of the cavern to its collapse. Caverns are formed in those places where
the pressure in the liquid becomes below a certain critical value. In a real fluid,
the critical pressure is approximately equal to the saturated vapor pressure of this
fluid at a given temperature [1, 2].

The study of the formation of bubbles and their development with a rapid
change in pressure in a liquid is of great interest in the theory of non-equilibrium
multiphase media [3, 4].

A convenient method for studying this problem is numerical simulation. The
mathematical model should include the equations of conservation of mass, mo-
mentum and energy for the carrier phase, as well as the equations describing the
process of formation of nuclei of the vapor phase and their development as a result
of changes in the parameters of the surrounding liquid and interfacial mass transfer.

.2 Cavitation basic equation

Significantly different spatial and temporal scales of transfers in the carrier and
dispersed phases and large gradients of gas-dynamic parameters characteristic of
the process under study necessitate the use of high-resolution numerical schemes for
integrating fluid equations and methods for solving systems of ordinary differential
equations arising in bubble dynamics models.

The purpose of the proposed scheme is a numerical study of the dynamics of
bubbles at high temperatures and pressures during the propagation of a rarefaction
wave. For this purpose, a mathematical model has been formulated that allows one
to investigate the formation of embryos and the dynamics of bubbles. It should be
noted that earlier some authors have already proposed numerical models for the
development of cavitation bubbles under other conditions [5, 6, 7, 8, 9].

Creating such a model to study the dynamics of cavitation bubbles presents
considerable difficulty. Firstly, this is due to the fact that the basic cavitation
equation (1), which describes the dynamics of the cavitation cavity, is a nonlinear
second-order differential equation and can be solved analytically only in a certain
approximation. The numerical solution of the equation (1) is associated with a
number of difficulties, namely: limited accuracy of the results, the need to vary
the parameters in the equation over a fairly wide range (and the result depends
not only on the values of these parameters, but also combination), the presence of
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reliable reference data on thermodynamic quantities characterizing the state of the
fluid and included in the equation (1). These values, in turn, are dependent on the
temperature of the liquid, its chemical composition and degree of purification.

Without taking into account vapor pressure and fluid viscosity, the basic equa-
tion of cavitation is:
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Ṙ2 =

1

ρ

[(
pb +

2σ

Ro

)(
Ro

R

)3k

− 2σ

R
− p0 − p(t)

]
. (1)

Here:

• R0 is the initial radius of the nucleus at time t = 0;

• R is the radius of the nucleus at the next time instant t;

• ρ is the density of the fluid;

• σ is the liquid surface tension;

• k is the adiabatic index for a couple in the bud;

• po is the hydrostatic pressure in a liquid. It was assumed in the calculations
that po is equal to the pressure on the binodal due to the equilibrium of the
cavity and its surrounding fluid, i.e. po = pb;

• R̈ is the acceleration of the cavity wall;

• Ṙ is the speed of movement of the cavity wall;

• 2σ
R0

is the Laplace pressure;

• R0

R
is the amplitude of oscillations of the cavity;

• p(t) is the time-dependent external pressure pulse.

This equation is also known as the Rayleigh-Plisset equation. It is important
that in the equation (1) it is assumed that:

• caverns remain spherically symmetrical throughout the time,

• inside the cavity there are spatially homogeneous areas,

• the length of the sound wave is much larger than the radius of the cavity
(otherwise, the spherical symmetry will be broken and the task will become
insoluble),

• there are no bulk forces,

• neglected,
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• fluid viscosity is not taken into account,

• liquid density is much greater than gas density,

• liquid compressibility is much less than gas compressibility,

• gas inside the cavity is stable,

• vapor pressure remains unchanged when the cavity moves.

.3 Numerical solution of the cavitation equation

We have written a program for the numerical solution of the basic cavitation equa-
tion in the Compaq Visual Fortran Profesional programming language. This is the
main program. The equation in the form (1) is unacceptable for numerical solution
due to large values of the frequency of external influence f = (103÷ 109) Hz, small
values of the initial size of the cavity R = (10−9÷10−6) m and the small integration
step dt. The procedure for normalizing the basic cavitation equation is described
in section 4.

The main program is based on the Runge-Kutta method.

At start-up, the main program requests the input of external parameter values
for which the liquid is examined (liquid temperature T, oscillation frequency f etc.)
Then an array of tabular data is accessed, from which the surface tension values of
corresponding to the given temperature are taken sigma, coefficient of fluid viscosity
µ, of fluid pressure and vapor pressure at the saturation line and at the boundary of
thermodynamic stability, etc. Note that temperature-dependent tabular data are
discrete values Ranks, and, as a rule, the points in which there are tabular data do
not correspond to a given temperature T. Therefore, the main program refers to
the auxiliary subroutine 1, which approximates or extrapolates the tabular data to
a given point.

A number of parameters included in the equation (1) are not tabular and, in
addition, depend on the temperature of the liquid. This is, for example, the initial
radius of a cavitation bubble R0, pressure p1, at which the first germ of homogeneous
cavitation appears, the initial phase of external oscillations ϕ0. To calculate these
quantities, the main program refers to subroutine 2, which is based on calculated
by subroutine 1 data calculates the specified values.

Let us dwell on the explanation of the temperature dependence of ϕ0. For the
case of homogeneous cavitation, the initial phase of oscillations ϕ0 depends on the
time point t1, in which the first germ appears in the defect-free volume of the fluid
and which later is already affected by external pressure. The instant of time t1
is related to the temperature of the fluid T. This connection is expressed by an
integral equation, the upper limit of integration of which is the required time t1,
and the lower one is the initial moment of time t0 = 0.
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We have written subroutine 3, which receives a task for calculating the time t1
from subroutine 2, the necessary tabular data is from subroutine 1, and the result
of the calculation is reported to the main program.

Having collected all the necessary data, the main program calculates the basic
cavitation equation for the maximum amplitude of oscillations of the cavity, and, if
necessary, other parameters (maximum pressure and maximum temperature inside
the cavity, etc.)

The scheme proposed here is common to any liquid. Replacing an array of
tabular data of one liquid with an array of data corresponding to another liquid,
we obtain a numerical solution of the cavitation equation for any liquid. A similar
technique was proposed for calculating the parameters of titanium in the liquid
state [10].

.4 Dynamics of cavitation bubbles under the action of si-

nusoidal pressure

Now we define the shape of the external pressure pulse, under the action of which
cavitation occurs (p(t) in the equation (1)). Consider the case of sinusoidal pressure
in the form:

p(t) = pa sin(ωt+ ϕ0), (2)

where pa is amplitude of external influence,

ω = 2πν = 2π
T

is the frequency of external oscillations,

ϕ0 - the initial phase of external oscillations at time t = 0.

Substitution of the (2) in the equation (1) gives:
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]
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The solution of the equation (3) is the dependence of the nucleus radius R/R0

on t/T , where T is the period of change of external influence [11]. Knowing this
dependence, we can determine the maximum radius of the nucleus Rmax and the
amplitude of oscillations of the bubble R

R0
at any time, as well as the maximum

amplitude R/R0. Equation (3) was solved numerically by the Runge–Kutta method
which was described earlier in section 3.

To achieve the minimum error of the result obtained numerically, it is necessary
that the dt step is minimal. However, the decrease in the interval dt leads to the
fact that the ratio dR

dt
tends to infinity and this tendency is all the greater when

approaching the critical point. This leads to the opposite effect, in which the error
of numerical calculations, on the contrary, increases. To exit the situation, the
equation (3) is normalized so that the ratio dR

dt
varies from 1 to 100.
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For this, a change of variables is introduced:

R∗ =
R

R0

, τ = 2πft = ωt, z =
dR

dt
.

Preliminary estimated calculations show that the R∗, τ, z variables obtained
by changing the variables do not exceed a few hundred, which fully meets our
requirements. After changing the variables, we have:
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Multiplying both sides of the last equation by 1
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The amplitude of the external influence pa was considered maximum, separated
by 5% from the thermodynamic stability of the fluid (spinodal) and determined
from the condition:

pa = 0.95(pb − ps),
where pb is the pressure on the binodal, ps is the pressure on the spinodals, calcu-
lated according to the theory of homogeneous nucleation.

The magnitude of the fluid pressure on the spinodals was determined by us
earlier in the works [12, 13].

To calculate ϕo = −pa
p1

it is necessary to determine the pressure values p1,

at which in the stretched liquid, one vapor nucleus appears in 1 cm3, as well as a
stretching time of t1 to a pressure of p1 (for the entire temperature range of T ). The
time of stretching the fluid t1 to the pressure p1 is determined from the condition:

p1 = pb − pa sin(ωt1).

The described studies of the dynamics of nuclei of homogeneous cavitation in
water under the action of sinusoidal pressure show that there are ranges of tem-
peratures and frequencies ν of external influences in which cavitation occurs most
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intensely, and the size of the bubbles increases in tens, thousands and even mil-
lions of times compared with the original size [14]. For water, such intervals are
ν < 50MHz and t < 317oC. This suggests that, under the conditions being consi-
dered, T and P inside the bubbles can increase by several orders of magnitude.

.5 Summary

Thus, a mathematical model was constructed, which allows to investigate non-
adhesion, interfacial mass transfer and the dynamics of bubbles with a change in
fluid pressure. Numerical simulation made it possible to determine the dependence
on time and spatial coordinates of the parameters of the carrier phase, volume
content, temperature and pressure of the vapor phase, concentration and size of
bubbles.

It is numerically determined that the frequency of external influences affects
the rate of evaporation inside the cavitation bubble. At too high frequencies, and,
consequently, short durations of the period, evaporation into the cavity does not
have time to occur and the maximum amplitude of oscillations of the bubble is not
high. At low frequencies, of the order of (1− 500) kHz, intense evaporation of gas
or vapor into the bubble occurs and its subsequent compression to its original size,
the maximum amplitude of oscillations of the cavity in this case increases sharply,
reaching values of R/R0 ∼ 106 with frequency ν = 250 kHz and temperature
T = 3100C [15]. With such significant compressions, the local temperature in the
cavities increases [16] to values at which initiation of a nuclear fusion reaction is
possible, as described in [17, 18, 19] and [20].
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