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.1 Introduction

As is known, the basic equations of motion in physics are formulated in the form of
differential equations for nontrivial (nonconstant) functions of one or more varia-
bles. These are either ordinary differential equations (ODEs) or partial differential
equations (PDEs). For example, in the Hamiltonian description of classical particle
dynamics, we are dealing with the ODEs for functions that describe the change in
time of the position and momentum of a particle. Quantum particle dynamics is
described by the PDE formulated for the wave function in the coordinate repre-
sentation, which depends on the time and particle coordinate. Thus, for physicists
dealing with ODEs and PDEs, it is very important to obtain their solutions in the
form of functions that are determined (explicitly or implicitly) by exact analytical
expressions. And, as is known, at present the most effective methods developed
to solve this problem are symmetry methods (see, for example, [1, 2]), the main
advantage of which is that they can in principle be applied to arbitrary ODEs and
PDEs.

However, not every differential equation has any symmetry. In this regard, the
question arises: is there a way to increase the chance to successfully find exact ana-
lytical solutions of investigated differential equations, before applying symmetry
methods to them? In our opinion, the answer is in the affirmative, and our argu-
ments in favor of the existence of such a way are as follows. It is a priori obvious
that it is impossible to find a common solution to the original ODE in the form of
an explicit function, represented by an exact analytic expression, when its common
solution is in reality an implicit or parametric function. In this connection, the idea
arises that the initial differential equation, before its solving, should be transfor-
med into equation(s) for functions from an optimally wide class to contain explicit,
implicit, and parametric functions as particular cases. We propose to use for this
purpose a class of functions that are implicitly defined, together with the derivati-
ves included in the original differential equation, by the system of zero integrals of
this equation.

This idea was first proposed and implemented in [3], by the example of a system
of ODEs of general form, which is unsolvable with respect to higher derivatives. The
main goal of the present paper is to show that idea is also applicable to PDEs of
general form. The effectiveness of this approach is demonstrated in Section 2 by the
example of the S-Gordon equation, where the sine-Gordon equation is considered
in detail. In addition, in Section 3 it is shown that this approach is useful also for
finding the Bäcklund transforms.

.2 Zero integrals of the S-Gordon equation

Let us consider the S-Gordon equation for the unknown function u = u(x1, x2):

Φ

(
x1, x2, u,

∂u

∂x1
,
∂u

∂x2
,

∂2u

∂x1∂x2

)
≡ ∂2u

∂x1∂x2
− S(u) = 0, (1)
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where S(u) is a given function. We will assume that the very function u and its
derivatives u1 = ∂u

∂x1
, u2 = ∂u

∂x2
, u12 = ∂2u

∂x1∂x2
are implicit functions given by zero

integrals of this equation. That is, in the six-dimensional Ũ -space, where Ũ =
(x1, x2, u, u1, u2, u12), we have the system of transcendental or algebraic equations

Φ (x1, x2, u, u1, u2, u12) ≡ u12 − S(u) = 0,

F̃n (x1, x2, u, u1, u2, u12) = cn, n = 1, . . . (2)

(we do not fix the number of zero integrals).

On the surface Φ(Ũ) = 0 these equations can be reduced to the equations
Fn(U) = cn, n = 1, . . . where U = (x1, x2, u, u1, u2). In the U -space, all zero
integrals must obey the same system of equations which can written (omitting the
index ’n’) in the form

D̂1F (U) = 0, D̂2F (U) = 0 (3)

where D̂1 and D̂2 are the operators of total derivatives with respect to x1 and x2,
respectively:

D̂1 =
∂

∂x1
+ u1

∂

∂u
+ L11(U)

∂

∂u1
+ S(u)

∂

∂u2
, D̂2 =

∂

∂x2
+ u2

∂

∂u
+ S(u)

∂

∂u1
+ L22(U)

∂

∂u2
, (4)

where L11(U) ≡ ∂u1/∂x1 and L22(U) ≡ ∂u2/∂x2 are unknown functions in the
U -space, which must obey the condition (D̂1D̂2 − D̂2D̂1)F (U) = 0 – in this case
the system (3) of linear PDEs is Jacobian.

Direct calculations show that this condition is reduced to the equations

∂L22

∂x1
+ u1

∂L22

∂u
+ L11

∂L22

∂u1
+ S(u)

∂L22

∂u2
− u2

dS

du
= 0,

∂L11

∂x2
+ u2

∂L11

∂u
+ S(u)

∂L11

∂u1
+ L22

∂L11

∂u2
− u1

dS

du
= 0 (5)

which can also be rewritten in the form

D̂1L22(U) = u2
dS(u)

du
, D̂2L11(U) = u1

dS(u)

du
.

As is seen, Eqs. (5) are nonlinear. Thus, within the framework of the technique of
zero integrals, the main difficulty is to find such functions L11(U) and L22(U) when
Eqs. (3) represent Jacobian system.

An attempt to solve Eqs. (5) for an arbitrary function S(u), with making use
of the Maple package, turns out to be successful only for S(u) = eau, where a
is a real constant (this is related to the fact that the S-Gordon equation with
S(u) = eau is distinguished in solving the problem of finding Bäcklund transforms
for the S-Gordon equation). For example, if we assume that, for S(u) = eau, both
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functions in (5) do not depend on x1 and x2, then direct calculation with Maple

gives L11 =
au2

1

2
+ C and

L22 = 2au1e
au (au21 + 2C)u2 − u1eau

(au21 + 2C)2
+W

(
(au21 + 2C)e−au

a
, u2 −

2u1e
au

au21 + 2C

)
;

here W is an arbitrary function of two variables, and C is an arbitrary constant.

At the same time, there is an easy way to find a particular solution to Eqs.
(5) for an arbitrary function S(u). To do this, it is enough to equate the ratio of
the coefficients facing the derivatives ∂F/∂u2 and ∂F/∂u, of the first equation in
(3), to the ratio of similar coefficients of the second equation. This results in the
algebraic equation on the functions L11(U) and L22(U). The second equation for
these functions can be obtained if one performs the analogous procedure with the
coefficients before the derivatives ∂F/∂u1 and ∂F/∂u. As a result, we obtain

L11(U)

u1
=
S(u)

u2
,

S(u)

u1
=
L22(U)

u2
.

It is easy to check that the functions

L11(U) =
u1
u2

S(u), L22(U) =
u2
u1

S(u) (6)

satisfy Eqs. (5).

For example, with these functions L11(U) and L22(U), Eqs. (3) for S = sin(u)
take the form

∂F

∂x1
+ u1

∂F

∂u
+
u1
u2

sin(u)
∂F

∂u1
+ sin(u)

∂F

∂u2
= 0;

∂F

∂x2
+ u2

∂F

∂u
+ sin(u)

∂F

∂u1
+
u2
u1

sin(u)
∂F

∂u2
= 0 (7)

Their solution, with the help of the Maple package, can be obtained as follows. We
first solve these equations separately and find two common integrals:

F1(U) ≡ u2
u1

= α, F2(U) ≡ u1u2 + 2 cos(u) = β

where α and β are arbitrary constants. Next, we make a change of variables u1 =√
α(β − 2 cos(u))/α and u2 =

√
α(β − 2 cos(u)), and reduce Eqs. (7) to the form

∂F

∂x1
+

√
β − 2 cos(u)

α

∂F

∂u
= 0;

∂F

∂x2
+
√
α[β − 2 cos(u)]

∂F

∂u
= 0.

The solution of this system is the integral

F3(U) ≡ x2 +
x1
α
± 2√

α(β + 2)
EllipticF

[
cos
(u

2

)
,

2√
β + 2

]
.
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Further, by solving the equation F3(U) = φ with respect to u, where φ is an
arbitrary constant, we finally obtain a three-parameter family of solutions of the
sine-Gordon equation

u(±)(x1, x2) = 2 arccos

{
±JacobiSN

[√
β + 2

2

(
x1√
α

+
√
α(x2 − φ)

)
,

2√
β + 2

]}
. (8)

For α > 0 and β ≥ −2 these solutions are real. In this case, u(±)(x1, x2) → π in
the limit β → −2. For −2 < β < 2 these solutions describe nonlinear waves, and
for β = 2 we have kink and antikink solutions.

As is known, the symmetry of the sine-Gordon equation is such that if u(x1, x2)
is a solution, then the functions 2πn + u(x1, x2) and 2πn − u(x1, x2), where n is
an arbitrary integer, are also solutions. That is, any particular solution of this
equation is, strictly speaking, an infinite-valued function. As for the expressions
(8), each of them gives that branch of the corresponding infinite-valued solution,
the change domain of which is the interval [0, 2π]. Wherein it is important to
emphasize that for −2 < β < 2, each of the two functions u(±)(x1, x2) is smooth
with respect to each argument and describes a nonlinear wave, the graph of which
is shifted to the left with increasing the second argument. If β > 2, then each of
these two functions gives, in the interval [0, 2π], a non-smooth representation of
the corresponding infinite-valued function, each the branch of which is a smooth
monotonically increasing or decreasing function that varies in the interval (−∞,∞).

Our next step is to show that this approach is useful not only for searching for
analytical solutions of nonlinear PDEs, but also for finding the Bäcklund transforms.

.3 Bäcklund Transforms for the S-Gordon equation

The above idea is fully applicable to finding Bäcklund transforms for PDEs (if
any). Again, we demonstrate this by the example of the S-Gordon equation. For
this purpose let us consider two S-Gordon equations (our approach differs from the
one used in [4] for finding Bäcklund transforms in this case):

∂2u

∂x1∂x2
= Su(u),

∂2v

∂x1∂x2
= Sv(v), (9)

where Su(u) and Sv(v) are given functions (these can be the same); u(x1, x2) and
v(x1, x2) are searched-for functions.

Again, in line with our approach let us proceed to the extended space in which
the unknown functions and their derivatives play the role of independent variables.
A little modification is that now we take U = (p,m,m1, p2); here p = u + v,
m = u − v, m1 = u1 − v1, p2 = u2 + v2; u1 = ∂u/∂x1, u2 = ∂u/∂x2, v1 = ∂v/∂x1,
v2 = ∂v/∂x2. To avoid undesirable unwieldiness, we do not include the variables
m2 = u2 − v2 and p1 = u1 + v1 in this list, since this approach would still required
to exclude them.
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Differentiating the zero integral F (U) of Eqs. (9) with respect to x1 and x2
gives(
∂F

∂p
+
∂F

∂m

)
u1 +

∂F

∂m1

Lu11 +
∂F

∂p2
Su(u) +

(
∂F

∂p
− ∂F

∂m

)
v1 −

∂F

∂m1

Lv11 −
∂F

∂p2
Sv(v) = 0,(

∂F

∂p
+
∂F

∂m

)
u2 +

∂F

∂m1

Su(u) +
∂F

∂p2
Lu22 +

(
∂F

∂p
− ∂F

∂m

)
v2 −

∂F

∂m1

Sv(v)− ∂F

∂p2
Lv22 = 0,

where Lu11(U), Lv11(U), Lu22(U) and Lv22(U) are unknown functions. Passing ever-
ywhere to the auxiliary variables p, m, m1 and p2, we obtain a system of two
equations for the function F (U):

D̂1F ≡ p1
∂F

∂p
+m1

∂F

∂m
+ f1(U)

∂F

∂m1

+

[
Su

(
p+m

2

)
+ Sv

(
p−m

2

)]
∂F

∂p2
= 0,

D̂2F ≡ p2
∂F

∂p
+m2

∂F

∂m
+

[
Su

(
p+m

2

)
− Sv

(
p−m

2

)]
∂F

∂m1

+ f2(U)
∂F

∂p2
= 0.(10)

where f1(U) = Lu11(U)− Lv11(U), f2(U) = Lu22(U) + Lv22(U).
The system of Eqs. (10) is Jacobian, provided that (D̂1D̂2 − D̂2D̂1)F = 0. To

solve this equation, we will proceed in the same way as in the previous section. Let
us equate the ratio of the coefficients before the derivatives ∂F/∂m1 and ∂F/∂p in
the first equation (3) to the ratio of analogous coefficients in the second equation.
Besides, let the ratio of the coefficients before derivatives ∂F/∂p2 and ∂F/∂m in
the first equation (3) be equal to the ratio of analogous coefficients in the second
equation. This gives two algebraic equations

f1(U)

p1
=
Su

(
p+m
2

)
− Sv

(
p−m
2

)
p2

,
Su

(
p+m
2

)
+ Sv

(
p−m
2

)
m1

=
f2(U)

m2

.

From here it follows that

f1(U) =
p1
p2

[
Su

(
p+m

2

)
− Sv

(
p−m

2

)]
, f2(U) =

m2

m1

[
Su

(
p+m

2

)
+ Sv

(
p−m

2

)]
.(11)

It is not difficult to show that Eqs. (10) can be reduced in this case to the form

X̂1F ≡
∂F

∂m
+

1

m1

[
Su

(
p+m

2

)
+ Sv

(
p−m

2

)]
∂F

∂p2
= 0,

X̂2F ≡
∂F

∂p
+

1

p2

[
Su

(
p+m

2

)
− Sv

(
p−m

2

)]
∂F

∂m1

= 0. (12)

One can show that X̂1(X̂2F )−X̂2(X̂1F ) is proportional to the product J(U)
(
p2

∂F
∂p2
−m1

∂F
∂m1

)
,

where

J(U) = 2S2
u

(
p+m

2

)
− 2S2

v

(
p−m

2

)
−m1p2S

′
u

(
p+m

2

)
−m1p2S

′
v

(
p−m

2

)
;(13)
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here the prime denotes the derivative. Thus, Eqs. (12) constitute a Jacobian system
if J(U) = 0 (otherwise it would have to be supplemented by the equation

p2
∂F

∂p2
−m1

∂F

∂m1

= 0;

we will exclude this variant).
The equation J(U) = 0 implies that the function J(U) is an integral of Eqs.

(12). We substitute it into Eqs. (12) and get two equations. In the original variables
they are

2 [Su(u)− Sv(v)] [S ′u(u)− S ′v(v)]− (u1 − v1)(u2 + v2) [S ′′u(u)− S ′′v (v)] = 0;

2 [Su(u) + Sv(v)] [S ′u(u)− S ′v(v)]− (u1 − v1)(u2 + v2) [S ′′u(u) + S ′′v (v)] = 0. (14)

The equation J(U) = 0, in the original variables, has the form

2Su(u)2 − 2Sv(v)2 − (u1 − v1)(u2 + v2) [S ′u(u) + S ′v(v)] = 0. (15)

We find from it the quantity (u1 − v1)(u2 + v2) and reduce the equations (14) to
the form

[Su(u) + Sv(v)][S ′′u(u)− S ′′v (v)]− [S ′u(u)]2 + [S ′v(v)]2 = 0;

[Su(u)− Sv(v)] [S ′′u(u) + S ′′v (v)]− [S ′u(u)]2 + [S ′v(v)]2 = 0. (16)

Subtracting and summing these two equations, and then separating the variables u
and v, we obtain

S ′′u(u)

Su(u)
=
S ′′v (v)

Sv(v)
= k; [S ′u(u)]2 − Su(u)S ′′u(u) = [S ′v(v)]2 − Sv(v)S ′′v (v) = a, (17)

where k and a are arbitrary real constants.
In solving these two equations, it is necessary to distinguish the general case,

when both functions Su(u) and Sv(v) are nonzero, and the particular case, when
one of these functions (for example, Sv(v)) is identically equal to zero. We start
with the general case.

The general case, in its turn, is subdivided into the following three variants:
(a) k 6= 0; (b) k = 0 but a 6= 0; (c) k = a = 0. Let’s consider each of them
separately.

Variant (a). The solution of Eqs. (17) for k 6= 0 shows that the Bäcklund
transform between the equations u12 = Su(u) and v12 = Sv(v) exists if their right-
hand sides are defined by one of two expressions

S(+)(u) =
e(u−C)

√
k − ae−(u−C)

√
k

2
√
k

; S(−)(u) = −ae
(u−C)

√
k − e−(u−C)

√
k

2
√
k

,

where C is an arbitrary constant (unlike the constants k and a it may have different
values for Su and Sv). In particular,
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• S(±) = ± sin(u− C), for k = −1, a = 1;

• S(±) = ± sinh(u− C), for k = 1, a = 1;

• S(±) = 1
2
e±(u−C), for k = 1, a = 0.

Further, with restricting ourselves to the solution S(+)(u), we assume that

Su(u) =
e(u−Cu)

√
k − ae−(u−Cu)

√
k

2
√
k

, Sv(v) =
e(v−Cv)

√
k − ae−(v−Cv)

√
k

2
√
k

. (18)

Note that Eqs. (12) with these functions have, in addition to the integral J(U),
one more integral –

m1

e
√
kp/2 − ae

√
k(Cu+Cv−p/2)

= α, (19)

where α is an arbitrary constant.
As a result, from the equations J(U) = 0 and (19) it follows that

m1 = α
(
e
√
kp/2 − ae

√
k(Cu+Cv−p/2)

)
; p2 =

e
√
k(m/2−Cu) − e−

√
k(m/2+Cv)

k α
. (20)

With p = u+ v, m = u− v, p2 = ∂u
∂x2

+ ∂v
∂x2

and m1 = ∂u
∂x1
− ∂v

∂x1
, the equalities (20)

represent searched-for Bäcklund transforms acting between the S-Gordon equations
with the right parts (18).

Note that the most interesting are particular cases of the transforms (20), which
correspond to Cu = Cv = 0 (this is due to the fact that the equation ux1x2 = S(u−
C), with help of replacement ũ = u− C, is reduced to the equation ũx1x2 = S(ũ)).
These cases are as follows:

• for a = 1, k → −k2, α→ −iα

u1 − v1 = 2α sin

(
k
u+ v

2

)
, u2 + v2 =

2

αk2
sin

(
k
u− v

2

)
; Su(u) = Sv(u) =

sin(ku)

k
;

• for a = 1, k → k2

u1 − v1 = 2α sinh

(
k
u+ v

2

)
, u2 + v2 =

2

αk2
sinh

(
k
u− v

2

)
; Su(u) = Sv(u) =

sinh(ku)

k
;

• for a = 0, k → k2

u1 − v1 = α exp

(
k
u+ v

2

)
, u2 + v2 =

2

αk2
sinh

(
k
u− v

2

)
; Su(u) = Sv(u) =

eku

2k
.
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Variant (b). Note that the integral (19) has a singularity as k → 0. In this case
a non-trivial solution exists only for a = 1. In the limit k → 0 for a = 1, instead of
the integral (19), we have

m1

p− Cu − Cv

= α. (21)

Further, as in the previous variant, with making use of this equation we exclude
m1 from the equation J(U) = 0 and obtain, instead of (20), Bäcklund transforms
for Su(u) = u− Cu and Sv(v) = v − Cv:

u1 − v1 = α(u+ v − Cu − Cv); u2 + v2 =
u− v − Cu + Cv

α
. (22)

Variant (c). For a = 0 and k → 0, the solution of Eqs. (17) are functions
Su(u) = Cu and Sv(v) = Cv, now J(U) = 2(C2

v − C2
u). Thus, Eqs. (12) constitute

a Jacobian system if Cv = ±Cu.
For example, for Cv = Cu two independent integrals of Eqs. (12) can be written

in the form m1 = α and p2 − 2Cum/m1 = β, and the corresponding Bäcklund
transforms are

u1 − v1 = α; u2 + v2 =
2Cu

α
(u− v) + β. (23)

If Cv = −Cu, then the two independent integrals of Eqs. (12) are p2 = β and
m1 − 2Cup/p2 = α, and the corresponding Bäcklund transforms are

u1 − v1 =
2Cu

β
(u+ v) + α; u2 + v2 = β. (24)

In the particular case, when Su(u) 6= 0 while Sv(v) ≡ 0, the function Su(u)
obeys the equation

[S ′u(u)]2 − Su(u)S ′′u(u) = 0, (25)

from which it follows that Su(u) = c eku; here c and k are arbitrary real constants.
In this case the two independent integrals of the equations (12) – the already

known integral J(U) (see (13)) and the new integral J1(U) – can be written in the
form

J(U) = −kp2m1 + 2c ek(p+m)/2 = 0, J1(U) = m1e
−kp/2 = α;

where α is an arbitrary real constant.
From here we find the Bäcklund transforms for Su(u) = c eku and Sv(u) = 0:

u1 − v1 = α exp

(
k
u+ v

2

)
, u2 − v2 =

2c

αk
exp

(
k
u− v

2

)
. (26)
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.4 Conclusion

By the example of the S-Gordon equation it is shown that solving of nonlinear PDEs
is reduced to solving the system of linear PDEs of the first order for zero integrals of
the original PDEs, which sets searched-for functions and their derivatives as implicit
functions. As is shown, this system contains unknown coefficients, and the main
difficulty in this approach is to find such coefficients for which the system of PDEs
for zero integrals is Jacobian. Making use of symmetry methods in solving this
task could expand the class of solutions of nonlinear PDEs in analytical form. Of
course, PDEs which arise for such coefficients in the case of the S-Gordon equation
(see Eqs. (5)) are set in the five-dimensional U -space, rather than in the two-
dimensional (x1, x2)-space. But, at the same time, the type of these equations is
fixed. It does not depend on the function S(u). Moreover, analogous equations
arise in searching for zero integrals of any original PDE of the second order for a
function of two independent variables.
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