Mathematical Modelling and Geometry

Volume 7, No 1, pp. 13-20 (2019)
Full text

Alternative proof on the crossing number of $K_{2,3, n}$

Michal Staš

Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics Technical University of Košice, Letná 9, 04200 Košice, Slovak Republic
e-mail: michal.stas@tuke.sk

Abstract

The main aim of the paper is to give the crossing number of join product $G+D_{n}$ for the connected graph G of order five isomorphic with the complete bipartite graph $K_{2,3}$, where D_{n} consists on n isolated vertices. The proof of the crossing number of $K_{2,3, n}$ was published by a partially unclear discussion of cases by Asano in [1]. In our proof, it will be used an idea of cyclic permutations and their combinatorial properties. Finally, by adding one edge to the graph G, we are able to obtain the crossing number of the join product with the discrete graph D_{n} for one new graph

Keywords: graph, drawing, crossing number, join product, cyclic permutation MSC numbers: 05C10, 05C38

[^0]
References

[1] K. Asano. The crossing number of $K_{1,3, n}$ and $K_{2,3, n}$ J. Graph Theory, 10 (1986), 1-8
[2] Š. Berežný, J. Buša, Jr. and M. Staš. Software solution of the algorithm of the cyclic-order graph. Acta Electrotechnica et Informatica, 18(1) (2018), 3-10
[3] Š. Berežný and M. Staš. On the crossing number of the join of five vertex graph G with the discrete graph D_{n}. Acta Electrotechnica et Informatica, 17(3) (2017), 27-32
[4] Š. Berežný and M. Staš. Cyclic permutations and crossing numbers of join products of symmetric graph of order six. Carpathian J. Math., 34(2) (2018), 1-14
[5] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic. Discrete Methods, 4 (1983), 312-316
[6] C. Hernández-Vélez, C. Medina and G. Salazar. The optimal drawing of $K_{5, n}$. Electronic Journal of Combinatorics, 21(4) (2014), \# P4.1, 29 pp .
[7] Daniel J. Kleitman. The crossing number of $K_{5, n}$. J. Combinatorial Theory, 9 (1970), 315-323
[8] M. Klešč. The crossing number of join of the special graph on six vertices with path and cycle. Discrete Math., 310 (2010), 1475-1481
[9] M. Klešč. The join of graphs and crossing numbers. Electron. Notes in Discrete Math., 28 (2007), 349-355
[10] M. Klešč and M. Valo. Minimum crossings in join of graphs with paths and cycles. Acta Electrotechnica et Informatica, 12(3) (2012), 32-37
[11] M. Klešč, J. Petrillová and M. Valo. On the crossing numbers of Cartesian products of wheels and trees. Discuss. Math. Graph Theory, 71 (2017), 339413
[12] M. Klešč and Š. Schrötter. The crossing numbers of join of paths and cycles with two graphs of order five. Combinatorial Algorithms, Sprinder, LNCS, 7125 (2012), 160-167
[13] M. Klešč and Š. Schrötter. The crossing numbers of join products of paths with graphs of order four. Discuss. Math. Graph Theory, 31 (2011), 312-331
[14] J. Petrillová. On the optimal drawings of Cartesian products of special 6-vertex graphs with path. Mathematical Modelling and Geometry, 3(3) (2015), 19-28
[15] M. Staš. On the crossing number of the join of the discrete graph with one graph of order five. Mathematical Modelling and Geometry, 5(2) (2017), 12-19
[16] M. Staš. Cyclic permutations: Crossing numbers of the join products of graphs. Proc. Aplimat 2018: $17^{\text {th }}$ Conference on Applied Mathematics, (2018), 979-987
[17] M. Staš. Determining crossing numbers of graphs of order six using cyclic permutations. Bull. Aust. Math. Soc., 98 (2018), 353-362
[18] M. Staš and J. Petrillová. On the join products of two special graphs on five vertices with the path and the cycle. Mathematical Modelling and Geometry, 6(2) (2018), 1-11
[19] D. R. Woodall. Cyclic-order graphs and Zarankiewicz's crossing number conjecture. J. Graph Theory, 17 (1993), 657-671

[^0]: © The author(s) 2019. Published by Tver State University, Tver, Russia

