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Abstract. The main aim of the paper is to give the crossing number of join
product G + Dn for the connected graph G of order five isomorphic with the
complete bipartite graph K2,3, where Dn consists on n isolated vertices. The proof
of the crossing number of K2,3,n was published by a partially unclear discussion of
cases by Asano in [1]. In our proof, it will be used an idea of cyclic permutations
and their combinatorial properties. Finally, by adding one edge to the graph G,
we are able to obtain the crossing number of the join product with the discrete
graph Dn for one new graph.
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.1 Introduction

The investigation on the crossing number of graphs is a classical and very diffi-
cult problem provided that an computing of the crossing number of a given graph
in general is NP-complete problem classified in [5]. The problem of reducing the
number of crossings have been studied in many areas. The most prominent areas
are VLSI-layouts. Introduction of the VLSI technology revolutionized circuit de-
sign and had a strong impact on parallel computing. A lot of research aiming at
efficient use of the new technologies has been done and further investigations are
in progress. As a crossing of two edges of the communication graph requires unit
area in its VLSI-layout, the crossing number together with the number of vertices
of the graph immediately provide a lower bound for the area of the VLSI-layout of
the communication graph. The crossing numbers has been also studied to improve
the readability of hierarchical structures and automated graph drawings. For the
understandability of graph drawings, the reducing of crossings is by far the most
important.

In the paper, we will use notations and definitions of the crossing numbers of
graphs like in [9]. We will often use the Kleitman’s result [7] on crossing numbers
of the complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6.

Using Kleitman’s result [7], the crossing numbers for join of two paths, join of two
cycles, and for join of path and cycle were studied in [9]. Moreover, the exact values
for crossing numbers of G + Dn and G + Pn for all graphs G of order at most four
are given in [13]. Also, the crossing numbers of the graphs G + Dn are known for
few graphs G of order five and six in [3], [8], [11], [12], [15], [16], and [17]. In all of
these cases, the graph G is mostly connected and contains also mostly at least one
cycle. Further, the exact values for the crossing numbers G + Pn and G + Cn have
been also investigated for some graphs G of order five and six in [8], [10], [12], [14],
and [18].

The methods presented in the paper are new, and they are based on combina-
torial properties of the cyclic permutations. Similar methods were partially used
for the first time in the papers [6], and [15]. In [3], [4], [16], and [17], the properties
of cyclic permutations were also verified with the help of software in [2].

.2 The crossing number of G + Dn

Let G be the connected graph of order five isomorphic with the complete bipartite
graph K2,3. We will consider the join product of G with the discrete graph on n
vertices denoted by Dn. The graph G + Dn consists of one copy of the graph G
and of n vertices t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n, is adjacent to
every vertex of G. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the five
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edges incident with the vertex ti. Thus, T 1 ∪ T 2 ∪ · · · ∪ T n is isomorphic with the
complete bipartite graph K5,n and

G + Dn = G ∪K5,n = G ∪

(
n⋃

i=1

T i

)
. (1)

In the paper, we will use the same notation and definitions for cyclic permu-
tations for a good drawing D of the graph G + Dn like in [4], and [16]. Let D
be a drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti in the
drawing D like the cyclic permutation that records the (cyclic) counter-clockwise
order in which the edges leave ti has been defined by Hernández-Vélez, Medina, and
Salazar [6]. We use the notation (12345) if the counter-clockwise order the edges
incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We have to emphasize
that a rotation is a cyclic permutation. In the paper, each cyclic permutation will
be represented by the permutation with 1 in the first position. We will deal with
the minimal necessary number of crossings between the edges of T i and the edges
of T j in a subgraph T i ∪ T j depending on their rotations rotD(ti) and rotD(tj).
Let us separate all subgraphs T i, i = 1, . . . , n, of the graph G + Dn into three
mutually-disjoint subsets depending on how many times the considered T i cros-
ses the edges of G in D. For i = 1, . . . , n, let RD = {T i : crD(G, T i) = 0} and
SD = {T i : crD(G, T i) = 1}. Every other subgraph T i crosses the edges of G
at least twice in D. Moreover, let F i denote the subgraph G ∪ T i for T i ∈ RD,
where i ∈ {1, . . . , n}. Thus, for a given subdrawing of G in D, any subgraph F i is
exactly represented by rotD(ti).

(a) (b) (c)

v1

v2

v5
v1 v1

v2 v2

v3

v3 v3v4

v4

v4v5 v5

Figure 1: Three drawings of G with a possibility of an existence of a subgraph T i

which do not cross the edges of G

According to the arguments in the proof of the main Theorem 1, if we would
like to obtain a drawing of G + Dn with the smallest number of crossings, then
the set RD must be nonempty. Hence, we will deal with only drawings of the
graph G with a possibility of an existence of a subgraph T i, which do not cross the
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edges of G, i.e., T i ∈ RD. The reader can easily verify that there are only three
possibilities of drawings of G with the desired property according to the considered
good subdrawing of G. In this case, without loss of generality, we can choose
the vertex notations of the graph in such a way as shown in Figure 1(a), (b), and
(c). These vertex notations of the graph G will be justified later.

(a) (b)

Figure 2: The good drawings of G + D1 and of G + D2

v1

v2

v3

v4

v5

Figure 3: The good drawing of G + Dn with 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n crossings

Two vertices ti and tj of G + Dn are antipodal in a drawing of G + Dn if the
subgraphs T i and T j do not cross. A drawing is antipodal-free if it has no antipodal
vertices. In the rest of the paper, each considered drawing of the graph G+Dn will
be assumed antipodal-free. Now we are able to prove the main result of the paper.



Alternative proof on the crossing number of K2,3,n 17

Theorem 1. cr(G + Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n for any n ≥ 1.

Proof. In Figure 3 there is the drawing of the graph G + Dn with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ n

crossings. Thus, cr(G + Dn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ n. We prove the reverse inequality

by induction on n. The graph G+D1 contains a subdivision of K3,3, and therefore

cr(G+D1) ≥ 1. So, cr(G+D1) = 1 by the good drawing of G+D1 in Figure 2(a).

Since the graph G + D2 contains a subdivision of K3,4, we have cr(G + D2) ≥ 2.

Hence, cr(G + D2) = 2 by the good drawing of G + D2 in Figure 2(b). Suppose

now that for n ≥ 3, there is a drawing D with

crD(G + Dn) < 4
⌊n

2

⌋⌊n− 1

2

⌋
+ n, (2)

and let

cr(G + Dm) ≥ 4
⌊m

2

⌋⌊m− 1

2

⌋
+ m for any integer m < n. (3)

Let us first show that the considered drawing D must be antipodal-free. As a

contradiction, suppose that, without loss of generality, crD(T n, T n−1) = 0. Using

possible subdrawings of G in Figure 1, one can easily verify that the subgraphs T n

and T n−1 are not from the set RD, i.e., crD(G, T n ∪ T n−1) ≥ 2. The known fact

that cr(K5,3) = 4 implies that any T k, k = 1, . . . , n − 2, crosses the edges of the

subgraph T n ∪ T n−1 at least four times. Therefore, for the number of crossings in

the considered drawing D, we have:

crD(G + Dn) = crD (G + Dn−2) + crD(T n ∪ T n−1) + crD(G, T n ∪ T n−1)

+crD(K5,n−2, T
n ∪ T n−1) ≥ 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ n− 2

+0 + 2 + 4(n− 2) = 4
⌊n

2

⌋⌊n− 1

2

⌋
+ n.

This contradiction with the assumption (2) confirms that D must be an antipodal-

free drawing. Moreover, if r = |RD| and s = |SD|, the assumption (3) together with

the well-known fact cr(K5,n) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
imply that in D, there is at least one

subgraph T i, which do not cross the edges of G. More precisely:

crD(G) + crD(G,K5,n) ≤ crD(G) + 0r + 1s + 2(n− r − s) < n,

i.e.,

s + 2(n− r − s) < n. (4)

This forces that r ≥ 1. In addition, without lost of generality, we can choose the

vertex notation of the graph G in such a way as shown in Figure 1(a), (b), and (c).
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Now, for a T i ∈ RD, the reader can easily verify that the subgraph F i = G ∪ T i is

uniquely represented by rotD(ti) = (12345), and crD(T i, T j) ≥ 4 for any T j ∈ RD

with j 6= i provided that rotD(ti) = rotD(tj), for more see [19]. Moreover, one

can easily verify over all possible drawings D that crD(G ∪ T i, T k) ≥ 3 for any

subgraph T k ∈ SD. Since there is one crossing among edges of the graph G in all

three subdrawings of G in D (in which there is a subgraph T i ∈ RD), by fixing the

subgraph G ∪ T i,

cr(G + Dn) = crD(K5,n−1) + crD(K5,n−1, G ∪ T i) + crD(G ∪ T i) ≥

≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3s + 3(n− r − s) + 1 = 4

⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+3n + r − 3 ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n + 1− 3 ≥ 4

⌊n
2

⌋⌊n− 1

2

⌋
+ n.

Thus, it was shown that there is no good drawing D of the graph G+Dn with less

than 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n crossings. This completes the proof of Theorem 1. 2

.3 Corollary

Figure 4: The graph H by adding one edge to the graph G

Let H be the graph obtained from G by adding the edge v1v5 in the subdrawing

in Figure 1(a). Since we are able to add this edge to the graph G without additional

crossings in Figure 3, the drawing of the graph H+Dn with 4
⌊
n
2

⌋⌊
n−1
2

⌋
+n crossings

is obtained. Thus, the next result is obvious.

Corollary 1. cr(H + Dn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n for any n ≥ 1.
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[6] C. Hernández-Vélez, C. Medina and G. Salazar. The optimal drawing of K5,n.

Electronic Journal of Combinatorics, 21(4) (2014), ] P4.1, 29 pp.

[7] Daniel J. Kleitman. The crossing number of K5,n. J. Combinatorial Theory, 9

(1970), 315–323
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