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Abstract. We consider asymptotically flat, static, traversable wormholes sup-
ported by a gravitating minimally coupled phantom scalar field with an arbitrary
self-interaction potential. It turns out that the main features of bound orbits in
wormhole spacetimes are radically different from those in static black hole spa-
cetimes. First, on the throat or near it, there necessarily exists a stable circular
orbit in which any test particle has zero angular momentum; this marginal orbit
is a degenerate analogue of the innermost stable circular orbit near black holes.
Thus, particles of matter resting on these orbits or slowly moving near them can
form a thin spherical shell consisting of gas, dust, or fluid. Second, the distance
to the throat from an orbit of a test particle with a sufficiently small specific an-
gular momentum can, unlike for the orbits around vacuum black holes, reaches
its minimum and maximum values arbitrarily many times (multiple precession
— periapsis precession with a very large deficit angle) during one full revolution
around the centre.
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.1 Introduction

The compact supermassive objects at the centres of normal galaxies are considered
to be surrounded by dense hair of dark matter and today it is still an open question
whether they are black holes, naked singularities or wormholes. Observations of
bound quasiperiodic timelike orbits play a key role in answering this question and
understanding the geometry of spacetime near the centres [1, 2]. On the other
hand, in modern astrophysics it is a common point of view that interpretation of the
observations should be based on the rigorous mathematical modelling of the central
gravitating objects. Within the framework of general relativity and its extensions,
there are interesting mathematical models of dark matter in galaxies based on a
self-gravitating real scalar field [3, 4, 5]. Any model for a classical (not quantum)
traversable wormhole requires violation of the null energy condition [6, 7, 8]. In fact,
these models violate all the known local and averaged energy conditions because the
null energy condition is the weakest of all classical ones. One of the most natural
model of a traversable wormhole is that of a self-gravitating phantom scalar field,
which enters the Lagrangian with the negative kinetic term [9, 10, 11, 12, 17]. At
present we cannot rule out the possibility that such compact objects exist.

In this article we consider static spherically symmetric phantom scalar field
wormholes that connect two opposite asymptotically flat regions. Our main aim
is to examine possible types of bound timelike orbits and their special features
near the throat for this wide class of traversable phantom scalar field wormholes.
So far, this issue has been considered only in a general descriptive mathematical
framework by assuming an arbitrary form of the shape function of a static spheri-
cally symmetric wormhole [13, 14]. Thus, this inverse modelling presupposes that
the spacetime metric has been specified before the solution of field equations, so
that the corresponding source (the energy-momentum tensor) of the gravitational
field has to be found from the Einstein equations. More interesting and physically
motivated problem is considered in Ref. [15], where the authors have studied the
geodesic motion in spacetimes describing traversable wormholes supported by a
massless conformally-coupled scalar field.

Bound orbits around static and stationary spherically symmetric vacuum black
holes are well studied [16]. In contrast, for scalar field wormhole spacetimes, we
now have no deeper understanding of the behaviour and the main features even for
circular orbits. This is due to the fact that we do not know (in advance, without
appealing to observations) the self-interaction potential of a scalar field, regardless
of whether we consider it as a really existing field or as a phenomenological model
of dark matter. In order to consider the problem in a sufficiently general approach,
we use the method developed in Refs. [9, 18, 19, 20, 21, 22] for static spherically
symmetric scalar field configurations. We also use the corresponding integral for-
mulas obtained in Refs. [23, 24, 25], which allow us to study bound orbits near the
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throats for the arbitrary self-interaction potentials without explicit solving the field
equations.

This article is a continuation of our previous publications [26] and [27] in which,
respectively, the general problem of circular orbits around static self-gravitating sca-
lar field configurations have been studied and the possibility of oscillations around
the marginal circular orbit near a topological geon’s surface or a wormhole’s throat
have been shown. In this article we clear up some details for the issues considered
in Ref. [27] and draw particular attention to the bound timelike orbits oscillating
around the marginal stable circular orbits, that is, to multiple periapsis precession
with a very large deficit angle.

The structure of the article is the following. The next Section contains a preli-
minary mathematical consideration of static spherically symmetric phantom scalar
field wormholes including the choice of a suitable coordinate system, asymptotic
conditions, the reduced field equations and the corresponding quadrature formulae.
In Section 3 we give a simple classification of qualitatively different types of bound
orbits near the throat for wormholes whose opposite asymptotic regions are flat.
Section 4 is devoted to studying some analytical illustrative example and to plotting
the shape of marginal bound orbits with large angles of periapsis precession.

Throughout the article we adopt the metric signature (+ − −−) and use the
geometrical system of units in which c = 1 and G = 1.

.2 Phantom scalar field wormholes

To give a complete picture of a typical static, spherically symmetric wormhole spa-
cetime supported by a phantom scalar field, we should first show that the negative
kinetic term in the scalar field Lagrangian is a necessary condition for the existence
of such wormholes. We begin with the action

Σ =
1

8π

∫ (
−1

2
S + ε〈dφ, dφ〉 − 2V (φ)

)√
|g| d 4x , (1)

where S is the scalar curvature, ε = ±1 the sign of the scalar field kinetic term,
V (φ) the self-interaction potential of a scalar field φ, and the angle brackets denote
the scalar product induced by a given spacetime metric g.

For a static spherically symmetric wormhole spacetime, there exist the most
natural coordinates, namely, the so-called quasiglobal coordinates in which the
metric has the form

ds2 = A2dt2 − dr2

A2
− C2

(
dθ2 + sin2 θ dϕ2

)
, (2)

where the metric functions A and C, as well as the field φ, are functions of the radial
coordinate r with the range from −∞ to ∞. In the orthonormal basis associated
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with the metric (2), the independent field equations for the action (1) are

−2A2 C
′′

C
−
(
A2
)′ C ′
C
− A2 C

′2

C2
+

1

C2
= εA2φ′

2
+ 2V , (3)(

A2
)′ C ′
C

+ A2 C
′2

C2
− 1

C2
= εA2φ′

2 − 2V , (4)

−A2φ′′ − φ′
((
A2
)′

+ 2A2 C
′

C

)
+ ε

dV

dφ
= 0 , (5)

where a prime denotes differentiation with respect to r. Without loss of generality,
from now on, we set r = 0 on the throats and then C ′(0) = 0. An evident necessary
condition for the existence of traversable wormholes is that C ′′ > 0 in some interval
of R+. From equations (3) and (4), we find C ′′/C = −εφ′2, so that ε = −1 and
C ′′ > 0 everywhere. It means that scalar field wormholes can be supported only by
phantom scalar fields and thus the null energy condition is necessarily violated.

The metric function C increases monotonically with r from the throat to infinity
and, taking into account the requirement of asymptotic flatness at infinity, we have
the asymptotic behaviour

C = r + a+ o(1) as r →∞ , (6)

C = −r + a∗ + o(1) as r → −∞ . (7)

For equations (3) — (5) which are written in the quasiglobal coordinates, we will
use the quadrature formulae [25] in the form (ε = −1)

φ′ =
√
C ′′/C , (8)

A2 = 2C2

∞∫
r

r − b
C4

dr , (9)

Ṽ (r) =
1

2C2

(
1− 3C ′

2
A2 − CC ′′A2 + 2C ′

r − b
C

)
, (10)

where the parameter b takes arbitrary real values. In order to use the formulas (8) —
(10) for obtaining wormhole solutions, it is necessary to specify a monotonically
increasing function C(r) satisfying the condition C ′′ > 0 on R+ and having the
asymptotic behaviour (6). Then the field function φ(r), the metric function A2,

and the function Ṽ (r) can be found from (9) and (10) by direct calculation.
The asymptotic behaviour of the metric function A2 defines the Schwarzschild

mass of the corresponding wormhole spacetime by

A2 = 1− 2m

C
+ o(1/r) , r → +∞ . (11)
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The condition (6) guarantees that m will have the meaning of the Schwarzschild
mass. Indeed, substituting the asymptotic expansion (6) into the formula (9) and
reexpressing the result as a power series expansion in 1/C, one obtains

A2 = 1− 2

3

a+ b

C
+ o(1/r) , r → +∞ . (12)

Comparing (11) with (12) to first order in 1/C, we see that

m =
a+ b

3
. (13)

By exactly the same reasoning, using the asymptotic behaviour (7), one can obtain
the analogous result, m∗ = (a∗ − b)/3, for the ’left-hand side’ of the wormhole.

.3 Types of bound timelike orbits near the throat

In static spacetimes with the metric (2), a massive test particle has the three
integrals of motion [26],

C2dϕ

ds
= J , A2 dt

ds
= E ,

(
dr

ds

)2

= E2 − Veff , (14)

where J and E are, respectively, the specific angular momentum and the specific
energy of the particle, and the effective potential has the form (k = 1 and k = 0 for
timelike and null geodesics, respectively)

Veff = A2

(
k +

J2

C2

)
. (15)

In astrophysical applications of geodesic motion in general relativity, one is
mainly interested in studying bound timelike orbits of test particles moving in the
central region of a gravitating object. We will restrict our consideration to the
central region of a traversable wormhole and to bound orbits near its throat. It
will be seen below that near the throat there exist stable circular orbits having zero
specific angular momentum J = 0 of a test particle (which is at rest) and fully
covering a spherical surface of the radius C(rmin) > C(0) with the corresponding
radial coordinate rmin > 0. Below such an orbit is called a marginal circular orbit
while bound orbits having zero or small angular momentum and oscillating near a
marginal circular orbit are referred to as marginal bound orbits. Note that similar
marginal orbits arise in some other spacetimes [28, 29].

The condition C ′(0) = 0 allows us to continue the function C(r) as an even
function in the region r < 0. In the other words, we can write this function in the
form C(r) = C+(r)+α(r), where C+(r) is an even function such that C(r) = C+(r)
for r > 0, while the bounded function α(r) obeys the conditions

α(r)
∣∣
r>0

= 0 , α′(0) = 0 , α(r) = a∗− a+ o(1) as r → −∞ ,
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so that α(r) =
(
α′′(0)/2

)
r2 + O(r3) , r → 0 − 0. We will restrict our attention

to wormholes with positive masses, m > 0, and to wormholes with zero mass
and the property of gravitational attraction at space infinity. The latter means
that

(
A2
)′
> 0 in the asymptotic region r → +∞. Recall that any wormhole

under consideration is traversable and connects, as it has been assumed above, two
asymptotically flat regions. Detailed analysis of the quadrature (9) shows, first,
that for a given C(r), a solution of the designated kind either does not exist at all
or is possible only for a unique value of the parameter b: in the latter case, if C(r)
is (or is not) an even function, then b = 0 (or, respectively, b 6= 0). Second, if b 6= 0,
the number and mutual location of extrema of A2 are the same as if there were
C(r) = C+(r) everywhere and, therefore, the qualitative behaviour of the marginal
bound orbits is the same. From now on we suppose b = 0 and a > 0, so that
m = a/3 > 0.

It is natural to distinguish two types, say, the first and the second, of marginal
circular orbits and associated marginal bound orbits. We will say that a marginal
circular orbit is of the first (respectively, second) type if it as a whole lies in the
region r > 0 (respectively, if it as a whole lies on the throat). Associated marginal
bound orbits of both types lie in some neighbourhood of the marginal circular orbit
and cross it an even number of times during either one cycle of radial motion if
J = 0, or one revolution around the centre if J > 0.

Therefore, the function C(r) can be regarded as being exactly or approximately
even, depending on whether we are considering a marginal orbit of the first or the
second type. It follows directly from (9) that if b = 0 and C(r) is even, then A2 will
also be even. From now on we will assume that wormholes possess the reflection
symmetry about their throats. Also we exclude from our consideration the special
case A ≡ 1 (as in the Ellis solution [10]) which admits no bound orbits at all.

From the asymptotic behaviour (11), it is obvious that in some region near the
(positive) spatial infinity

(
A2
)′
> 0 and therefore A2 reaches its minimum value

at some point rmin > 0 in a coordinate neighbourhood of the throat. Then there
exists an integer n > 2 such that{(

A2
)(k)}

r=rmin

= 0 (k = 1, . . . , n− 1) ,
{(
A2
)(n)}

r=rmin

> 0 . (16)

For the sufficiently general case n = 2, these conditions can be written in the
explicit form as {

2
C ′

C
A2 − 2

r

C2

}
r=rmin

= 0 , (17)

{
2
C ′′

C
A2 − 2

C ′2

C2
A2 − 2

C2
+ 4

C ′

C

r

C2

}
r=rmin

=

=

{
2
C ′′

C
A2 + 2

C ′2

C2
A2 − 2

C2

}
r=rmin

=

{
1

C2

((
C2
)′′
A2 − 2

)}
r=rmin

> 0 . (18)
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For any wormhole under consideration the first condition in (16) necessarily
holds (for some even n > 2) on the throat (r = 0) where the function A2 has a
maximum or a minimum. If the second condition in (16) also holds, then A2 has
a minimum and the corresponding marginal circular orbit lies on the throat and
is of second type; otherwise (recalling that we exclude the case A2 = 1) it lies at
some radius C(rmin), rmin > 0, and is of the first type. In the latter case, rmin can
be determined by solving equation (17). Thus, in order to determine what type
of marginal orbits appears in a wormhole spacetime, we should verify whether the
second condition in (16) holds on the throat or not. For n = 2 (see the inequality
(18)) and n = 4, it can be written, more conveniently, in the inverse form{
CC ′′A2

}
r=0

< 1 (n = 2) ,
{
C2C(4)A2−2C

(
C ′′
)2

+2C ′′
}
r=0

< 0 (n = 4) ; (19)

if one of the conditions holds then the corresponding marginal circular orbit lies
outside the throat and is of the first type.

.4 Analytical examples

In this section we consider some illustrative examples of wormholes having marginal
orbits of both the first and the second type and plot the shapes of orbits near the
marginal circular ones. The equation for the orbit shapes can be obtained directly
from the first integrals of motion (14) in the form

dr

dϕ
=
C2

J

√
E2 − Veff . (20)

On the other hand, in most astronomical applications we are interested in the me-
tric shape function C(ϕ) rather than the coordinate one r(ϕ). Taking this fact
into account, for any solution r(ϕ) of equation (20) we will plot the corresponding
function C(r(ϕ)) on a polar coordinate grid and the corresponding effective po-
tential Veff (r, J) for different values of the specific angular momentum; note that
Veff (r, 0) = A2(r).

4.1 A marginal orbit of the first type (n=2)

In order to explore basic general properties of the shapes of marginal bound orbits,
we choose a simple piecewise analytic function C(r) in the form

C =



−r − 45

32
r−1 +

9

4
r−3 − 5

2
r−5, r < 2;

r4 +
39

128
r2 +

93

64
, −2 6 r 6 2;

r +
45

32
r−1 − 9

4
r−3 +

5

2
r−5, r > 2 ;

(21)



16 I. M. Potashov et al

this function as a whole is of class C2. By direct calculation, one can easily verify
the fulfilment of the first condition in (19) and find the explicit expressions for the
field φ (8), the metric function A2 (8), and the self-interaction potential (10), but
they are too unwieldy to be presented here. Instead some features of the marginal
bound orbits, mostly informative for the astronomical observations, are plotted in
Fig. 1. In particular, the number of periapsis points (nearest to the throat) and the
radial distance C(rp) from the throat to a periapsis point rp on the marginal bound
orbit are increasing when the specific energy E decreases, while the amplitude of
oscillations, that is, the radial distance between two neighbouring periapsis and
apoapsis points, is decreasing. In a series of numerical experiments, we also have
found that the central maximum of the effective potential, E2

J = Veff (r, J)|r=0,
appears to grow monotonically with increasing the specific angular momentum (for
not too large values J and such that E2

J > 1), while the corresponding impact
parameter [16], D2 = J2E2

J/(E
2
J − 1), decreases.
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Figure 1: The example (21). Left-hand panel: the effective potentials against

radial coordinate r for a test particle with zero specific angular momentum J = 0

(black curve, Veff = A2) on the marginal circular orbit and for a test particle

with J = 0.2 (red curve) on the corresponding marginal bound orbit. Right-hand

panel: the orbital shape C(ϕ) for the two test particles with E2 = 0.96 (red curve)

and E2 = 0.954 (blue curve) both having the same specific angular momentum

J = 0.05.

4.2 A marginal orbit of the first type (n=4)

In this subsection we consider the family of the radial functions

C =
(
r6 + r4 + b4r2 + a6

)1/6
. (22)

It is obvious that the case n = 4 in (19) can be obtained only by fine tuning of
the parameters a and b. By numerical simulations of the corresponding geometry
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we have achieved the fulfilment of the condition CC ′′A2|r=0 = 1 and the second
condition in (19) with a = 0.5 , b = 0.647. The effective potentials and the orbital
shapes are presented in Fig. 2. From this figure, it can be seen that there are no
any significant qualitative differences between the cases n = 2 and n = 4 in the
vicinity of the sphere of radius rmin. Note that the presence of a maximum of the
effective potential with J > 0 at some point rmax > rmin means that in the region
r > rmax the wormhole will manifest the gravitational repulsion and will have no
bound orbits.
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Figure 2: The example (22). On the left-hand side: the effective potentials against

radial coordinate r for a test particle with zero specific angular momentum J = 0

(black curve) on the marginal circular orbit and for a test particle with J = 0.12

(red curve) on the corresponding marginal bound orbit. On the right-hand side:

the orbital shape C(ϕ) for the three test particles with E2 = 0.965 (black line),

E2 = 0.984 (red line), and E2 = 0.995 (blue line) all having the same specific

angular momentum J = 0.05.

4.3 A marginal orbit of the second type (n=2)

The family of the radial functions

C = ((r2 + 1)2 − a2)1/4 + b , 0 6 a < 1 , b > 0 (23)

gives simple examples of wormholes having marginal circular orbits of the second
type. We restrict our attention to massless configurations which are defined by
the condition b = 0, because they can be treated analytically and their marginal
bound orbits have the same qualitative features as those for wormholes with nonzero
Schwarzschild mass (13). From (8), (9), and (15) (for timelike geodesic), we find

φ ′ = − 1

C2

√
1− 3a2r2/C4 ,
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A2 =
C2

2a
ln
r2 + 1 + a

r2 + 1− a , Veff =
C2 + J2

2a
ln
r2 + 1 + a

r2 + 1− a .
The effective potentials and the orbital shapes are presented in Fig. 3.
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Figure 3: The example (24) with a2 = 8/9, b = 0, E2 = 0.95, J = 0.1 (black line)

and J = 0.3 (red line).

.5 Conclusions

In this article we have studied circular orbits near the throats of static spherically
symmetric wormholes supported by a phantom scalar field minimally coupled to
gravity. We have used the quadrature formulas of the scalar field inverse problem
method which is applicable to static spherically symmetric configurations. These
formulae allow us to consider the orbital problem without preliminary definition of
the self-interaction potential of the scalar field. A key feature of the method is its
independence from the form of the self-interaction potential.

We have found that bound orbits near the throats of wormholes are radically
different from those near event horizons of black holes. On the throat or near it,
there necessarily exists a stable circular orbit in which any test particle has zero
angular momentum. This marginal orbit is a degenerate analogue of the innermost
stable circular orbit near black holes. Particles of matter resting on these orbits can
form a thin spherical shell consisting of gas, dust, or fluid. The gas of particles falling
little by little into the potential well in a small neighbourhood of such a marginal
orbit must have, unlike accretion disks around black holes, an extremely chaotic
behaviour. We have also shown that the distance to the throat from an orbit of a
test particle with a sufficiently small specific angular momentum can, unlike orbits
around vacuum black holes, reaches its minimum and maximum values arbitrarily
many times during one full revolution around the centre. In other words, such an
orbit has anomalous periapsis precession with a very large deficit angle.
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