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Abstract. We suggest a cosmological model of the Universe based on the two
discoveries: 1 cosmological constant is very small, and 2 the Universe has two
degenerate vacua, “false” and “true” ones. After the Big Bang, the Universe is
presented by a Bubble with the de-Sitter spacetime metric inside, having a “false
vacuum” with the VEV ∼ 1018 GeV. We show that black-holes-hedgehogs (BHH)
are topological defects of this vacuum. Considering the Gravi-Weak Unification,
we obtained a solution of the BHH giving its mass MBH ∼ 1018 GeV, radius
RBH ∼ 10−21 GeV−1 and horizon radius rh ≈ 2.29RBH . We demonstrated that
the cooling of the Universe leads to a new phase transition transforming the first
universal bubble into the new bubble with the FLRW spacetime metric inside.
This bubble has “the true vacuum” with new topological defects of the U(1)(el-mag)
group. The noncommutative geometry of the vacua spacetime explains an almost
zero cosmological constants. In this model, we predict a stability of the EW-
vacuum, and a new physics producing at LHC the triplet SU(2) Higgs bosons
at energies E ∼ 10 TeV. At the end of this paper, we discuss the problem what
comes beyond the standard model.
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.1 Introduction

In this letter, we present a new cosmological model which is based on the discovery
of the very small cosmological constant (Dark Energy) [1–3] and on the existence
of two almost degenerate vacua in the Universe [4, 5]. Vacuum energy density of
our Universe is the Dark Energy (DE), which is related to cosmological constant Λ:

ρDE = ρvac =
(
M red

P l

)2
Λ. (1)

Here M red
P l ' 2.43 × 1018 GeV is the reduced Planck mass. Recent cosmological

measurements [6] give:

ρDE '
(
2× 10−3 eV

)4
, (2)

Λ ' 10−84 GeV2. (3)

Such a tiny value of ρDE was first predicted by B.G. Sidharth in 1997 [1,2], explai-
ning an accelerating expansion of our Universe. In 2011 S. Perlmutter, B. Schmidt
and A. Riess [3] were awarded by the Nobel Prize for the discovery of the accelera-
ting expansion of the Universe by Hubble Space Telescope investigation of Type Ia
super-novae.

Considering extremely small cosmological constant of our Universe, Bennett,
Froggatt and Nielsen [4, 5] assumed only zero, or almost zero, cosmological con-
stants for all vacua existing in the Universe and suggested the Multiple Point Prin-
ciple (MPP). MPP postulates: There are several vacua in Nature with the same
energy density, or cosmological constant, and all cosmological constants are zero,
or approximately zero.

From experimental results, cosmological constants which corresponds to the
minimum of the Higgs effective potential Veff (φH) are not exactly equal to zero.
Nevertheless, they are extremely small. By this reason, the authors of Refs. [4, 5]
assumed to consider zero cosmological constants as a good approximation. If the
effective potential has two degenerate minima, then according to the MPP, the
following requirements are satisfied [4, 5]:

Veff
(
φ2
min1

)
= Veff

(
φ2
min2

)
= 0, (4)

and
V ′eff

(
φ2
min1

)
= V ′eff

(
φ2
min2

)
= 0, (5)

where

V ′(φ2) =
∂V

∂φ2
. (6)

Assuming the existence of the two degenerate vacua in the SM: 1 the first electro-
weak vacuum at v1 ≈ 246 GeV, and 2 the second Planck scale vacuum at v2 ∼ 1018

GeV, Froggatt and Nielsen predicted the top-quark and Higgs boson masses [5]:

Mt = 173± 5 GeV; MH = 135± 10 GeV. (7)
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The prediction of Ref. [5] for the top quark mass Mt was confirmed by SLAC with
great accuracy. The LHC result for the discovered Higgs boson: MH ≈ 125.7 GeV
came in 2012. The prediction of the mass of the SM SU(2)-doublet Higgs boson
given by Ref. [5] was improved in Refs. [7, 8] by calculations of the 2-loop and 3-
loop radiative corrections to the effective Higgs potential Veff (H). The prediction of
Ref. [7]: MH = 129± 2 GeV provided the possibility of the theoretical explanation
of the value MH ≈ 125.7 GeV observed at LHC.

.2 Gravi-weak unification and bubbles of the Universe

After the Big Bang and Grand Unification phase, the Universe, according to A.
Vilenkin’s idea (see for example [9]) is a bubble with a de-Sitter space-time metric
inside. The radius of such a bubble (radius of the Universe) is equal to the de-Sitter
horizon radius:

RUN ' Rde-Sitter horizon ' 1028 cm. (8)

Such a bubble has a vacuum with the Planck scale VEV: v2 ∼ 1018 GeV. This
vacuum decays very quickly, and for this reason, is called the “false vacuum”.

If the vacuum of this bubble contains global monopoles as topological defects,
then these monopoles lead to the inflation of the universal bubble, because they
have magnetic repulsive forces of interaction.

In Refs. [10, 11] we have suggested the gravi-weak unification with a Clifford
group of symmetry G(GW ) = Spin(4, 4) which is spontaneously broken into the
following product:

G(GW ) → SL(2, C)(grav) × SU(2)(weak). (9)

Assuming that after the Big Bang there exists a Theory of Everything (TOE)
rapidly broken down to the direct product of the following gauge groups:

G(TOE) → G(GW ) × U(4)→ SL(2, C)(grav) × SU(2)(weak) × U(4)

→ SL(2, C)(grav) × SU(2)(weak) × SU(4)× U(1)Y

→ SL(2, C)(grav) × SU(2)(weak) × SU(3)c × U(1)(B−L) × U(1)Y

→ SL(2, C)(grav) × SU(3)c × SU(2)L × U(1)Y × U(1)(B−L)

→ SL(2, C)(grav) ×GSM × U(1)(B−L), (10)

we obtain (below the see-saw scale MR ∼ 109 → 1014 GeV) the standard model
(SM) group of symmetry:

GSM = SU(3)c × SU(2)L × U(1)Y . (11)

The action S(GW ) of the gravi-weak unification is given in Ref. [10] by the following
expression:

S(GW ) = − 1

guni

∫
M

d4x
√
−g
[

1

16

(
R|Φ|2 − 3

2
|Φ|4

)
+

1

16

(
aRµνR

µν + bR2
)

+
1

2
DµΦ†DµΦ +

1

4
F i
µνF

i µν

]
, (12)
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where guni is a parameter of the gravi-weak unification, parameters a, b (with a+b =
1) are “bare” coupling constants of the higher derivative gravity, R is the Riemann
curvature scalar, Rµν is the Ricci tensor, |Φ|2 = ΦaΦa is a squared triplet Higgs
field, where Φa (with a = 1, 2, 3) is an iso-vector scalar belonging to the adjoint
representation of the SU(2) gauge group of symmetry. In Eq. (12):

DµΦa = ∂µΦa + g2ε
abcAbµΦc (13)

is a covariant derivative, and

F a
µν = ∂µA

a
ν − ∂νAaµ + g2ε

abcAbµA
c
ν (14)

is a curvature of the gauge field Aaµ of the SU(2) Yang-Mills theory. The coupling
constant g2 is a “bare” coupling constant of the SU(2) weak interaction.

The GW action (12) is a special case of the f(R)-gravity when:

f(R) = R|Φ|2. (15)

In a general case of the f(R)-gravity, the action can be presented by the following
expression:

S =
1

2κ

∫
d4x
√
−g f(R) + Sgrav + Sgauge + Sm, (16)

where Sm describes matter fields (fermions and Higgs fields).
Using the metric formalism, we obtain the following field equations:

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν2F (R) = κTmµν , (17)

where:

F (R) ≡ df(r)

dr
, (18)

r = R is a distance, κ = 8πGN , GN is the gravitational constant, and Tm is the
energy-momentum tensor derived from the matter action Sm.

2.1 Parameters of the gravi-weak unification model

Assuming that at the first stage of the evolution (before the inflation), the Universe
had the de-Sitter space-time – maximally symmetric Lorentzian manifold with a
constant and positive background scalar curvature R – we have obtained the follo-
wing relations from the action (12):

1 The vacuum expectation value v2 – the VEV of “the false vacuum” – is given
by the de-Sitter scalar curvature R:

v22 =
R

3
. (19)

2 At the Planck scale the squared coupling constant of the weak interaction
is:

g22 = guni. (20)
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The replacement Φa/g2 → Φa leads to the following GW-action:

S(GW ) = −
∫
M

d4x
√
−g
(
R

16
|Φ|2 − 3g22

32
|Φ|4 +

1

2
DµΦ†DµΦ +

1

4g22
F i
µνF

i µν

+grav. terms) . (21)

Now considering the VEV of the false vacuum as v = v2, we have:

v2 =
R

3g22
. (22)

The Einstein-Hilbert action of general relativity with the Einstein’s cosmological
constant ΛE is given by the following expression:

SEH =

∫
d4x
√
−gLEH = −1

κ

∫
d4x
√
−g
(
R

2
− ΛE

)
. (23)

3 The comparison of the Lagrangian LEH with the Lagrangian given by Eq. (21)
near the false vacuum v leads to the following relations for the Newton’s gravitati-
onal constant GN and reduced Planck mass:(

M red
P l

)2
= (8πGN)−1 =

1

κ
=
v2

8
. (24)

4 Then we have:

v = 2
√

2M red
P l ≈ 6.28× 1018 GeV, (25)

and

ΛE =
3g22
4
v2. (26)

Using the well-known in literature renormalization group equation (RGE) for the
SU(2) running constant α−12 (µ), where α2 = g22/4π and µ is the energy scale, we
can use the extrapolation of this value to the Planck scale [12, 13] and obtain the
following result:

α2 (MPl) ∼
1

50
, guni = g22 = 4πα2 (MPl) ≈ 4π × 0.02 ≈ 0.25. (27)

2.2 The solution for the gravitational black-holes-hedgehogs

A global monopole is described by the part Lh of the Lagrangian L(GW ) given by
the action (21):

Lh = −R
16
|Φ|2 +

3g22
32
|Φ|4 − 1

2
∂µΦa∂µΦa + ΛE

= −1

2
∂µΦa∂µΦa +

λ

4

(
|Φ|2 − v2

)2
+

ΛE

κ
− λ

4
v4

= −1

2
∂µΦa∂µΦa +

λ

4

(
|Φ|2 − v2

)2
. (28)
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Here we have used v = v2,

ΛE =
3g22
4
v2, (29)

and

λ =
3g22
8
. (30)

Substituting in Eq. (30) the value g22 ≈ 0.25 given by Eq. (27), we obtain:

λ ≈ 3

32
. (31)

Eq. (26) gives:
ΛE

κ
=

3g22
32

v4 =
λ

4
v4, (32)

and in Eq. (28) we have the compensation of the Einstein’s cosmological term. Then

Lh = −1

2
∂µΦa∂µΦa + V (Φ), (33)

where the Higgs potential is:

V (Φ) =
λ

4

(
|Φ|2 − v2

)2
. (34)

This potential has a minimum at 〈|Φ|〉min = v, in which it vanishes:

V
(
|Φ|2min

)
= V ′

(
|Φ|2min

)
= 0, (35)

in agreement with the MPP conditions (4) and (5).
The field configurations describing a monopole-hedgehog [14,15] are:

Φa = vw(r)
xa

r
, (36)

Aaµ = a(r)εµab
xb

r
, (37)

where xaxa = r2 with (a = 1, 2, 3), w(r) and a(r) are some structural functions.
This solution is pointing radially. Here Φa is parallel to r̂ – the unit vector in the
radial direction, and we have a “hedgehog” solution of Refs. [14, 15].

The field equations for Φa in the flat metric reduces to a single equation for
w(r):

w′′ +
2

r
w′ − 2

r2
w − w(w2 − 1)

δ2
= 0, (38)

where δ is the core radius of the hedgehog. The function w(r) grows linearly when
r < δ and exponentially approaches unity as soon as r > δ. Barriola and Vilenkin [9]
took w = 1 outside the core which is an approximation to the exact solution. As a
result, the functions w(r) and a(r) are constrained by the following conditions:

w(0) = 0, and w(r)→ 1 when r →∞, (39)

a(0) = 0, and a(r) ∼ −1

r
when r →∞. (40)
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2.3 The metric around of the global monopole

The most general static metric around of the global monopole is a metric with
spherical symmetry:

ds2 = B(r)dt2 − A(r)dr2 − r2
(
dθ2 + sin2θ dϕ2

)
. (41)

For this metric the Ricci tensor has the following non-vanishing components:

Rtt = −B
′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− 1

r

B′

A
,

Rrr =
B′′

2B
+
B′

4B

(
A′

A
+
B′

B

)
− 1

r

A′

A
,

Rθθ = −1 +
r

2A

(
−A

′

A
+
B′

B

)
+

1

A
,

Rϕϕ = sin2 θRθθ. (42)

The energy-momentum tensor of the monopole is given by

T tt = v2
w′2

2A
+ v2

w2

r2
+

1

4
λv4

(
w2 − 1

)2
,

T rr = −v2w
′2

2A
+ v2

w2

r2
+

1

4
λv4

(
w2 − 1

)2
,

T θθ = Tϕϕ = v2
w′2

2A
+

1

4
λv4

(
w2 − 1

)2
. (43)

Here κ = 1. Considering the approximation used in Ref. [9], we obtain an approxi-
mate solution for a monopole-hedgehog taking w = 1 out the core of the hedgehog
(see also Refs. [16–19]). In this case scalar curvature R is constant and Eq. (17)
comes down to the Einstein’s equation:

1

A

(
1

r2
− 1

r

A′

A

)
− 1

r2
=

1

v2
T tt , (44)

1

A

(
1

r2
+

1

r

B′

B

)
− 1

r2
=

1

v2
T rr , (45)

where the energy-momentum tensor is given by the following approximation:

T tt = T rr ≈
v2

r2
, (46)

T θθ = Tϕϕ = 0. (47)

Taking into account Eq. (46), we obtain the following result by subtraction of
Eqs. (44) and (45):

A′

A
+
B′

B
= 0, (48)
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and then asymptotically (when r →∞) we have:

A ≈ B−1. (49)

From Eq. (44) we obtain a general relation for the function A(r):

A−1(r) = 1− 1

r

∫ r

0

T tt r
2dr. (50)

In the limit r →∞ we obtain:

A(r) = 1− κv2 − 2GN M

r
+ ..., (51)

B(r) =

(
1− κv2 − 2GN M

r
+ ...

)−1
. (52)

.3 The mass, radius and horizon radius of the black-hole-

hedgehog

Then Eq. (50) suggests the following equation for the hedgehog mass M :

M = 8π

∫ ∞
0

T tt r
2dr, (53)

or

M = 8πv2
∫ ∞
0

(
w′2 +

w2 − 1

r2
+

(w2 − 1)
2

4δ2

)
r2dr. (54)

The function w(r) was estimated in Ref. [19] at r < δ:

w(r) ≈ 1− exp
(
−r
δ

)
, (55)

and we obtain an approximate value of the hedgehog mass:

M = −MBH ≈ −8πv2δ. (56)

There is a repulsive gravitational potential due to this negative mass. A freely
moving particle near the core of the black-hole experiences an outward proper
acceleration:

r̈ = −GNM

r
=
GNMBH

r
. (57)

We have obtained a global monopole with a huge mass (56), which has a pro-
perty of the hedgehog. This is a black-hole solution, which corresponds to a global
monopole-hedgehog that has been “swallowed” by a black-hole. Indeed, we have
obtained the metric of Ref. [9]:

ds2 =

(
1− κv2 +

2GN MBH

r

)
dt2 − dr2

1− κv2 + (2GN MBH) /r

−r2
(
dθ2 + sin2 θdϕ2

)
. (58)
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A black hole has a horizon. A horizon radius rh can be calculated by solving the
equation A(rh) = 0 given by Eq. (51):

1− κv2 +
2GN MBH

rh
= 0, (59)

and we have a solution:

rh =
2GN MBH

κv2 − 1
. (60)

According to Eq. (24), κv2 = 8, and we obtain the black-hole-hedgehog with a
horizon radius rh equal to:

rh =
2

7
GN MBH =

2

7
× κ

8π
× 8πv2δ ≈ 2.29 δ. (61)

We see that the horizon radius rh is larger than the hedgehog radius δ, and our
concept that “a black hole contains the hedgehog” is justified.

The universal bubble with a “false vacuum” contains black-hole-hedgehogs as
topological defects. Now the vacuum reminds a boiling water with little bubbles of
vapour.

Assuming, for example, that hedgehogs form a hypercubic lattice with a lattice
parameter l = λPl and with one monopole in the cell of a cubic lattice, we have the
negative energy density of such a lattice equal to:

ρlat ' −MBHM
3
Pl. (62)

If this energy density of the hedgehogs lattice compensates the Einstein’s vacuum
energy (32), we have the following equation:

λ

4
v4 ≈MBHM

3
Pl, (63)

Using the estimation (25), we obtain:

3

2
M4

Pl ≈MBHM
3
Pl, (64)

or

MBH =
3

2
MPl ≈ 3.65× 1018 GeV. (65)

Therefore hedgehogs have a huge mass of order of the Planck mass. Eq. (56) predicts
a radius δ of the hedgehog’s core:

δ ≈ MBH

8πv2
≈
(

128π

3
MPl

)−1
∼ 10−21 GeV−1. (66)

We see that the black-hole-hedgehog, obtained in our model, is a very heavy object
having the Planck scale mass and a very small radius. Nevertheless, these properties
will be saved in a more correct model.
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.4 The phase transition from the “false vacuum” to the

“true vacuum”

At the early stage the Universe is very hot, but then it begins to cool down. Black-
holes-monopoles (as bubbles of the vapour in the boiling water) begin to disappear.
The temperature dependent part of the energy density dies away. In that case,
only the vacuum energy density can survive. Since it is a constant, the Universe
expands exponentially, and an exponentially expanding Universe leads to the infla-
tion. While the Universe is expanding exponentially, so it is cooling exponentially.
This scenario was called super-cooling of the Universe. When the temperature
reaches the critical value Tc, the Higgs mechanism of the SM creates a new conden-
sate φmin1 (here φ is the SU(2) Higgs boson H), and the vacuum becomes similar
to a superconductor, in which the topological defects are magnetic vortices. The
energy of black-holes is released as particles, and all these particles (quarks, leptons,
vector bosons) acquired their masses mi through the Yukawa coupling mechanism
Yf ψ̄fψfφ. Therefore, they acquired the Compton wavelength, λi = ~/mic. At some
finite cosmic temperature which is the critical temperature Tc, a system exhibits a
spontaneous symmetry breaking, and we observe a phase transition from the bubble
with “the false vacuum” to the bubble with “the true vacuum”. Hedgehogs confi-
ned, and the universal bubble is transformed into the bubble having a space-time
with FLRW-metric (Friedmann-Lemaitre-Robertson-Walker metric). The vacuum
of this bubble acquires new topological defects. These new topological defects be-
long to the U(1)(el-mag) group. They are: a magnetic vortices – “ANO strings”

by Abrikosov-Nielsen-Olesen [20,21], and b Sidharth’s Compton wave topological
objects [22, 23]. After the phase transition, the Universe begins its evolution to-
ward the low energy electro-weak phase. Here the Universe undergoes the inflation,
which leads to the phase having the VEV: v1 ≈ 246 GeV. This is a “true” vacuum,
in which we live.

.5 Non-commutativity of the vacuum’s space-time manifold

A hedgehog is a heavy object formed as a result of the gauge-symmetry breaking
during the phase transition of the iso-scalar triplet Φa system. The black-holes-
hedgehogs are similar to elementary particles because a major part of their energy
is concentrated in a small region near the monopole core. Assuming that the Planck
scale false vacuum is described by a non-differentiable space-time having lattice-
like structure, where sites of the lattice are black-holes with “hedgehog” monopoles
inside them, we describe this manifold by a non-commutative geometry with a
minimal length l = λPl.

In the non-commutative geometry coordinates obey the following commutation
relations:

[dxµ, dxν ] ≈ βµνl2 6= 0, (67)

containing any minimal cut off l. Previously the following commutation relation
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was considered by H.S. Snyder [24]

[x, p] = }

(
1 +

(
l

}

)2

p2

)
, etc., (68)

which shows that effectively 4-momentum p is replaced by

p→ p

(
1 +

(
l

}

)2

p2

)−1
. (69)

Snyder-Sidharth dispersion relation:

[xı, xj] = βıj · l2 (70)

leads to a modification in the Dirac and Klein-Gordon equations (see Ref. [25]).
The modified Dirac equation:{

γµpµ +m+ γ5αlp
2
}
ψ = 0, (71)

contains an extra term which gives a slight mass mνe for the electronic neutrino
(having m = 0 in the SM), which is roughly of order ∼ 10−8me, where me is the
mass of the electron. Thus, the non-commutative geometry leads to a Lagrangian
describing the electronic neutrino mass mνe 6= 0.

Sidharth’s prediction for DE: Using the non-commutative theory of the
discrete space-time, B.G. Sidharth predicted in Ref. [2] (see also the book [34]) a
tiny value of cosmological constant:

Λ ' 10−84 GeV2, (72)

as a result of the compensation of Zero Point Fields contributions by non-commutative
contributions of the vacuum lattice.

According to the Sidharth’s theory, in the EW-vacuum we again have lattice-
like structures formed by bosons and fermions, and the lattice parameters “li” are
equal to the Compton wavelengths: li = λi = ~/mic. Cosmological constant of the
universal bubble having EW-vacuum with VEV v1 ≈ 246 GeV again is very small
due to the non-commutative contributions.

.6 Stability of the EW-vacuum

The energy conservation law tells us that the vacuum energy density before the
phase transition (for T > Tc) is equal to the vacuum energy density after the phase
transition (for T < Tc), therefore we have:

ρvac(at Planck scale) = ρvac(at EW scale). (73)
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The analogous link between the Planck scale phase and EW phase was considered
in Ref. [22]. It was shown that the vacuum energy density (DE) is described by
different contributions to these phases. This difference is a result of the phase
transition. However, the vacuum energy densities (DE) of both vacua are equal,
and we have a link between gravitation and electromagnetism via the Dark Energy.
Eq. (73) shows: since ρvac (at the Planck scale) is almost zero, then ρvac (at EW
scale) also is almost zero, and we have a triumph of the Multiple Point Principle,
confirming that our Universe has two degenerate vacua with an almost zero vacuum
energy density.

.7 The prediction of a new physics

Using lattice results for hedgehogs in the Wilson loops of the SU(2) Yang-Mills
theory presented by Ref. [26], we considered the critical value of β = 1/g22 = α−12 /4π
in hedgehog’s confinement phase. Ref. [26] gives:

βcrit ≈ 2.5. (74)

Using this result, we predicted in our recent paper Ref. [27, 28] the production of
the SU(2)-triplet Higgs bosons Φa at LHC at energy scale ∼ 10 TeV.

Indeed, from Eq. (74) we have:

α−12,crit ≈ 31.4. (75)

The renormalization group equation (RGE) for α−12 (µ) (for example, see [29] and
references there) is given by the following expression:

α−12 (µ) = α2
−1(Mt) + b t, (76)

where t = ln(µ/Mt), and Mt ' 173.34 GeV is the top quark mass.
Usually RGE is a function of x: x = log10 µ. Then

t = ln

(
10x

Mt

)
= x ln 10− lnMt ≈ 2.3x− 5.16. (77)

For SU(2)-gauge theory b ≈ 19/12π and α−12 (Mt) ≈ 29.4± 0.02, and we obtain the
following RGE equation [29]:

α−12 (x) ≈ 29.4 + 0.504(2.3x− 5.16). (78)

Then we can calculate xcrit using the following result:

α−12,crit ≈ 31.4 = 29.4 + 1.16xcrit − 2.6, (79)

which gives:
xcrit ∼ 4, (80)
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or

µcrit ∼ 104 GeV. (81)

This result means that the hedgehog’s confinement happens at energy of 10 TeV,
which is a threshold energy of the production of a pair of the SU(2)-triplet Higgs
bosons Φa:

Ethreshold ∼ 104 GeV = 10 TeV. (82)

At this energy we can expect to see at LHC the production of the triplet Higgs
bosons with mass & 5 TeV. This provides a new physics in the SM.

.8 What comes beyond the standard model

The standard model of particle physics is an almost complete theory. In Ref. [30]
we presented our (non-trivial) efforts to go beyond the standard model (SM). We
try to overcome the following shortcomings of the SM (see also Ref. [31]): The
SM 1 doesn’t include gravity; 2 doesn’t solve hierarchy problem; 3 doesn’t
deliver the mass of neutrino (neutrino remains a massless particle in the SM); 4
can be changed by the existence of new yet undiscovered particles: a by super-

symmetric counterparts of the SM particles; b by the existence of more heavy
multiplets of the SM group G(SM); c by the existence of new bound states (NBS)
in the framework of the SM, for example, by the existence 6t + 6t̄ NBS sugge-
sted in Refs. [32, 33]; 5 doesn’t describe Dark Energy; 6 doesn’t describe Dark
Matter; 7 cannot accommodate the observed predominance of matter over an-
timatter (matter/antimatter asymmetry); 8 finally, cannot describe 19 arbitrary
parameters which are contained in theory.

Going beyond the SM we are able to explain some points of the SM shor-
tcomings: 1 In the present theory gravity is included by consideration of the
gravi-weak Unification model [10, 11]. 2 Hierarchy problem can be solved by
MPP [32]. 3 The mass of neutrino is given by a theory of non-commutativity,
applied to the universal vacuum by B.G. Sidharth [2,25,34]. 4 The present theory
predicts that super-symmetry cannot be observed at LHC because of the very high
SUSY breaking scale: MSUSY ∼ 1018 GeV. 5 In Refs. [27,28,30] we predicted the
production of the SU(2) triplet Higgs bosons at energy ∼ 10 TeV, which can be de-
tected by LHC. 6 We also suggested a theory, which predicts the existence of new
bound states (NBS) created by the interaction of the SM Higgs bosons with 6 top
and 6 antitop quarks [32,33,35]. Such 6t+ 6t̄ resonances can be observed by LHC
at energy ∼ 1 TeV [35]. 7 Sidharth’s theory of non-commutativity applied to the
universal vacuum space-time manifold gives an explanation of the DE [2,25,34]. 8
There are a lot of different theories published in the world literature which are de-
voted to the origin of the Dark Matter, but it has not yet been definitely found. A
very interesting possibility is to consider the DM as a matter of the Hidden World
(HW), where HW is a Mirror World with broken mirror parity (see for example
Refs. [36, 37]). 9 The Hidden World can explain the observed predominance of
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matter over antimatter (matter/antimatter asymmetry) [38,39]. 10 Finally, 19 pa-
rameters of the SM can be described by the Multiple Point Model (see attempts in
Ref. [32]).

In conclusion, we want to emphasize that our cosmological model is predictable
and opens new possibilities for the development of this theory.
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