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.1 Introduction

The problem of reducing the number of crossings was studied in many areas.
The most prominent areas is VLSI-layouts. Introduction of the VLSI technology
revolutionized circuit design and had a strong impact on parallel computing. A lot
of research aiming at efficient use of the new technologies has been done and furt-
her investigations are in progress. As a crossing of two edges of the communication
graph requires unit area in its VLSI-layout, the crossing number together with the
number of vertices of the graph immediately provide a lower bound for the area of
the VLSI-layout of the communication graph. The crossing numbers has been also
studied to improve the readability of hierarchical structures and automated graph
drawings. The visualized graph should be easy to read and understand. For the
understandability of graph drawings, the reducing of crossings is by far the most
important.

In the paper, we will deal with determining of the crossing numbers of the join
products of two graphs. Let G be a simple graph with vertex set V and edge set
E. A drawing of G is a representation of G in the plane such that its vertices are
represented by distinct points and its edges by simple continuous arcs connecting
the corresponding point pairs. For simplicity, we assume that in a drawing (a) no
edge passes through any vertex other than its end-points, (b) no two edges touch
each other (i.e., if two edges have a common interior point, then at this point they
properly cross each other), and (c) no three edges cross at the same point. The
crossing number cr(G) of a simple graph G with vertex set V (G) and edge set E(G)
is defined as the minimum possible number of edge crossings in a good drawing of
G in the plane. It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing, meaning that no edge crosses itself,
no two edges cross more than once, and no two edges incident with the same vertex
cross each other. Let G1 and G2 be simple graphs with vertex sets V (G1) and
V (G2), and edge sets E(G1) and E(G2), respectively. The join product of two
graphs G1 and G2, denoted by G1 +G2, is obtained from the vertex-disjoint copies
of G1 and G2 by adding all edges between V (G1) and V (G2). For |V (G1)| = m
and |V (G2)| = n, the edge set of G1 + G2 is the union of disjoint edge sets of the
graphs G1, G2, and the complete bipartite graph Km,n. Let Dn consist on n isolated
vertices, Pn and Cn be the path and the cycle on n vertices, respectively. In the
proofs of the paper, we will often use the term “region” also in nonplanar drawings.
In this case, crossings are considered to be vertices of the “map”.

It was proved by Garey and Johnson [4] that computing the crossing number
of a graph is an NP-complete problem. The exact values of crossing numbers
are known only for a few specific families of graphs. Specially for join product it
was proved the crossing numbers for join of two paths, join of two cycles, and for
join of path and cycle in [8]. Moreover, the exact values for crossing numbers of
G + Pn and G + Cn for all graphs G of order at most four are given in [12], and
the crossing numbers of the graphs G + Dn, G + Pn, and G + Cn are also known
for some graphs G of order five and six, see [9], [11], [13], and [15]. We extend
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known results concerning crossing numbers for join products of two graphs G, and
H of order five with the path Pn and the cycle Cn on n vertices. The disconnected
graph G consists of one 4-cycle and of one isolated vertex (see Figure 1(a)), and
the connected graph H consists of one 3-cycle and of two non-adjacent leaves (see
Figure 1(c)). The methods used for establishing the crossing numbers of G + Dn

for disconnected graphs are new, and they are based on combinatorial properties of
cyclic permutations. The similar methods were used first time in the papers [2], [3],
[15], and [16]. In [1], the properties of cyclic permutations are verified by applying
computer programs.

Let D (D(G)) be a good drawing of the graph G. We denote the number
of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We
denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). It is easy to see
that for any three mutually edge-disjoint subgraphs Gi, Gj, and Gk of G, the
following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

In the paper, some proofs are based on the Kleitman’s result [7] on crossing numbers
of complete bipartite graphs. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6.

.2 The crossing number of G + Pn and G + Cn

We consider the join product of G with the discrete graph on n vertices Dn.
The graph G+Dn consists of one copy of the graph G and of n vertices t1, t2, . . . , tn,
where any vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G. Let T i,
1 ≤ i ≤ n, denote the subgraph induced by the five edges incident with the vertex
ti. Thus, T 1 ∪ T 2 ∪ · · · ∪ T n is isomorphic with the complete bipartite graph K5,n

and

G + Dn = G ∪K5,n = G ∪

(
n⋃

i=1

T i

)
. (1)

Let D be a good drawing of the graph G+Dn. The rotation rotD(ti) of a vertex
ti in the drawing D is the cyclic permutation that records the (cyclic) counter-
clockwise order in which the edges leave ti, see [5]. We use the notation (12345)
if the counter-clockwise order the edges incident with the vertex ti is tiv1, tiv2,
tiv3, tiv4, and tiv5. We emphasize that a rotation is a cyclic permutation. For
i, j ∈ {1, 2, . . . , n}, i 6= j, every subgraph T i∪T j of the graph G+Dn is isomorphic
with the graph K5,2. D. R. Woodall [17] defined the cyclic-ordered graph COG with
the set of vertices V = {P1, P2, . . . , P24}, and with the set of edges E, where two
vertices are joined by the edge if the vertices correspond to the permutations Pi
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and Pj, which are formed by the exchange of exactly two adjacent elements of the
5-tuple (i. e. an ordered set with 5 elements). Hence, if dCOG(”rotD(ti)”, ”rotD(tj)”)
denotes the distance between two vertices correspond to the cyclic permutations
rotD(ti) and rotD(tj) in the graph COG, then

dCOG(”rotD(ti)”, ”rotD(tj)”) = Q(rotD(ti), rotD(tj)) ≤ crD(T i, T j)

for any two different subgraphs T i and T j, where Q(rotD(ti), rotD(tj)) denotes
the minimum number of interchanges of adjacent elements of rotD(ti) required to
produce the inverse cyclic permutation of rotD(tj). As the complete bipartite graph
K5,n is a subgraph of G+Dn, we will use the following properties of crossings among
edges of its subgraph K5,2 with the help of Woodall’s results [17] in the subdrawing
of T i ∪ T j induced by any good and antipodal free drawing D of K5,n:

1. If rotD(ti) = rotD(tj), then crD(T i, T j) ≥ 4.

2. crD(T i, T j) ≥ 4−Q
(

rotD(ti), rotD(tj)
)

.

3. crD(T i ∪ T j, T k) ≥ Q
(

rotD(ti), rotD(tj)
)

in the subdrawing of T i ∪ T j ∪ T k

induced by D for any k 6= i, j.

4. crD(T i, T j) = Q(rotD(ti), rotD(tj)) + 2k for some non-negative integer k.

In [15], it was proved that cr(G + Dn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1. We

will deal with the minimum necessary number of crossings between the edges of
T i and the edges of T j in a subgraph T i ∪ T j induced by the drawing D of the
graph G + Pn depending on the rotations rotD(ti) and rotD(tj). We will separate
the subgraphs T i, i = 1, . . . , n, of the graph G + Pn into three subsets depending
on how many the considered T i crosses the edges of G in D. For i = 1, 2, . . . , n,
let RD = {T i : crD(G, T i) = 0} and SD = {T i : crD(G, T i) = 1}. Every other
subgraph T i crosses G at least twice in D. We denote by r = |RD| and s = |SD|.
Moreover, let F i denote the subgraph G ∪ T i for T i ∈ RD, where i ∈ {1, . . . , n}.
Thus, any F i is exactly represented by rotD(ti).

(a) (b) (c)

v1 v1v2

v2 v3 v3

v4

v4

v5

v5

v1

v2

v3

v4

v5

Figure 1: Two possible drawings of G with the vertex notations and drawing of H
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Assume a good drawing D of the graph G + Pn in which the edges of G do not
cross each other. In this case, without loss of generality, we can choose the vertex
notations of the graph in such a way as shown in Figure 1(a). There are only four
different possible configurations of F i summarized in Table 1 (see [15]). In the rest
of the paper, each cyclic permutation will be represented by the permutation with
1 in the first position. We denote by M the set of all configurations that exist in
the drawing D belonging to the set M = {A1, A2, A3, A4}.

A1 : (15432) A2 : (14325)

A3 : (14352) A4 : (14532)

Table 1: Configurations of graph G∪ T i with vertices denoted of G as in Fig. 1(a)

Let X, Y be the configurations fromMD. We shortly denote by crD(X, Y ) the
number of crossings in D between T i and T j for different T i, T j ∈ RD such that F i,
F j have configurations X, Y , respectively. Finally, let cr(X, Y ) = min{crD(X, Y )}
over all good drawings of the graph G+Pn. All lower-bounds of number of crossing
of configurations from M are summarized in Table 2 (see [15]).

− A1 A2 A3 A4

A1 4 3 2 3

A2 3 4 3 2

A3 2 3 4 3

A4 3 2 3 4

Table 2: The necessary number of crossings between T i and T j for the configurations

Ak, Al of subgraphs F i and F j, where k, l ∈ {1, 2, 3, 4}

Similarly, there is only one drawing of the graph G with one crossing among its
edges and with a possibility of an existence of a subgraph T i which do not cross
the edges of G. Assume now a good drawing D of the graph G + Pn in which
the edges of G cross once as shown in Figure 1(b). Then, in the drawing D, we
obtain the same lower-bounds of number of crossing of two configurations like in
the previous case (see [15]).

Now we are able to prove the main results of the paper. We will compute the
exact values of crossing numbers of the small graphs G+P2, G+C3, and H +C3 in
this paper using the algorithm located on the website http://crossings.uos.de/.
This algorithm can find the crossing numbers of small undirected graphs. It uses
an ILP formulation, based on Kuratowski subgraphs, and solves it via branch-and-
cut-and-price. The system also generates verifiable formal proofs, as described in
[6]. Unfortunately, the capacity of this system is restricted.
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v2

v1

v3

v4

v5

Figure 2: A drawing of G + Pn

Theorem 1. cr(G + Pn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 for n ≥ 2.

Proof. In Figure 2 there is a drawing of G+Pn with 4
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1 crossings.

Thus, cr(G + Pn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1. We prove the reverse inequality by

induction on n. Using algorithm on the website, we can prove that the result is

true for n = 2. Suppose now that, for n ≥ 3, there is a drawing D with

crD(G + Pn) < 4
⌊n

2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
+ 1, (2)

and let

crD(G + Pm) ≥ 4
⌊m

2

⌋⌊m− 1

2

⌋
+
⌊m

2

⌋
+ 1 for any integer m < n. (3)

As the graph G + Dn is a subgraph of the graph G + Pn, then crD(G + Pn) =

4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
, and therefore, no edge of the path Pn is crossed in D. Let us show

that the considered drawing D must be antipodal-free. As a contradiction suppose

that, without loss of generality, crD(T n−1, T n) = 0. Since the graph G∪ T n−1 ∪ T n

contains K4,3 as a subgraph, and cr(K4,3) = 2, we give

2 ≤ crD(G ∪ T n−1 ∪ T n) = crD(G) + crD(T n−1 ∪ T n) + crD(G, T n−1 ∪ T n).

It implies from the fact crD(G) ≤ 1, that

1 ≤ crD(T n−1 ∪ T n) + crD(G, T n−1 ∪ T n).

The known fact cr(K5,3) = 4 implies that any T k, k = 1, 2, . . . , n − 2, crosses

T n−1 ∪ T n at least four times. So, for the number of crossings, in D, we have
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crD(G + Pn) = crD (G + Pn−2) + crD(T n−1 ∪ T n) + crD(K5,n−2, T
n−1 ∪ T n) +

+ crD(G, T n−1 ∪ T n) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+
⌊n− 2

2

⌋
+ 1 + 4(n− 2) + 1 =

= 4
⌊n

2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
+ 1.

This contradiction confirms that D is antipodal-free. Moreover, our assumption on

D together with cr(K5,n) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
implies that

crD(G) + crD(G,K5,n) ≤
⌊n

2

⌋
.

Thus,

crD(G) + 0r + 1s + 2(n− r − s) ≤
⌊n

2

⌋
. (4)

Since crD(G) ≤ 1, we will discuss two following cases:

Case 1: crD(G) = 0. Then it follows from condition (4) that s ≤
⌊
n
2

⌋
, and

r ≥
⌈
n
2

⌉
. This forces that r ≥ 2. Now, we will discuss for two different T i, T j ∈ RD

the existence of possible configurations of subgraphs F i, F j in the drawing D.

(a) {A1, A2} ⊆ MD or {A1, A4} ⊆ MD or {A2, A3} ⊆ MD or {A3, A4} ⊆ MD.

Without lost of generality, let us fix two T n−1, T n ∈ RD such that F n−1, F n

have different configurations from {A1, A2} ⊆ MD. Let us note that the

configurations A1 and A2 are represented by the cyclic permutations (15432)

and (14325), respectively. Since (14325) can be obtained from (15432) by one

interchange of adjacent elements 1 and 5, then crD(T n−1, T n) ≥ 4 − 1 = 3.

Using the properties of the cyclic-ordered graph COG mentioned above, it is

easy to verify, that crD(T n−1∪T n, T i) ≥ 3 for any T i, i 6= n−1, n. Moreover,

crD(T n−1 ∪ T n, T i) ≥ 5 for any T i ∈ RD, i 6= n− 1, n by summing the values

in all columns in the first two rows of Table 2. Thus, if we fix the graph

G ∪ T n−1 ∪ T n, then the fact −s ≥ −
⌊
n
2

⌋
implies that

cr(G+Pn) ≥ crD(K5,n−2)+crD(K5,n−2, G∪T n−1∪T n)+crD(G∪T n−1∪T n) ≥

≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 5(r− 2) + 4s+ 5(n− r− s) + 3 = 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+

+5n− s− 7 ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 5n−

⌊n
2

⌋
− 7 > 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

Due to symmetry, we can apply the same idea for other mentioned above

couples of configurations.
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(b) MD = {A1, A3} or MD = {A2, A4}.
Assume that MD = {A1, A3}. If there are two subgraphs T i, T j ∈ RD with

crD(T i, T j) 6= 2 such that F i, F j have different configurations from {A1, A3},
then crD(T i, T j) ≥ 4 by Woodall’s result (see property 4).

In the case, if there are no two subgraphs T i, T j ∈ RD with crD(T i, T j) = 2

such that F i, F j have different configurations from {A1, A3}, then by fixing

of the graph G ∪ T l, for any T l ∈ RD, we have

cr(G + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G ∪ T l) + crD(G ∪ T l) ≥

≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 2(n− r) + 0 = 4

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 2n+

+2r − 4 ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 2n + 2

⌈n
2

⌉
− 4 > 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

In addition, without lost of generality, let us fix two T n−1, T n ∈ RD such that

F n−1, F n have different configurations from {A1, A3} with crD(T n−1, T n) = 2.

As no edge of the path Pn is crossed in D, no vertex ti is placed inside the

4-cycle of the graph G. Moreover, if a vertex ti is placed in some triangular

region of the subdrawing D(F n) with two vertices of G on its boundary, then

crD(G ∪ T n, T i) ≥ 3. Hence, by fixing of G ∪ T n we obtain a contradiction

cr(G + Pn) ≥ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3(n− 1) + 0 > 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

By the same arguments, no vertex ti is placed inside the triangular region of

the subdrawing D(F n−1) with two vertices of G on its boundary. Since we

assume that crD(T n−1, T n) = 2, then any subgraph T i, i 6= n − 1, n crosses

the edges of T n−1 ∪ T n at least four times in D, i.e. crD(T n−1 ∪ T n, T i) ≥ 4.

Further, crD(T n−1∪T n, T j) ≥ 4 + 2 = 6 for any T j ∈ RD, j 6= n−1, n. Thus,

by fixing of the graph G ∪ T n−1 ∪ T n we have

cr(G+Pn) ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+6(r−2)+5(n−r)+2 = 4

⌊n− 2

2

⌋⌊n− 3

2

⌋
+

+5n + r − 10 ≥ 4
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 5n +

⌈n
2

⌉
− 10 > 4

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

(c) MD = {Ai} for some i ∈ {1, 2, 3, 4}.
Without lost of generality, we can assume the configuration A1 of the subgraph

F l = G ∪ T l for some T l ∈ RD. By fixing of the graph G ∪ T l we obtain the

same inequalities like at the beginning in Case 1b).
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Case 2: crD(G) = 1. Then it follows from condition (4) that s <
⌊
n
2

⌋
, and r >

⌈
n
2

⌉
.

This forces that r ≥ 2. If we apply the same arguments like in Case 1, then

cr(G + Pn) > 4
⌊n

2

⌋⌊n− 1

2

⌋
+
⌊n

2

⌋
.

So, we obtain a contradiction with the assumption that there are less than

4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 1 crossings in the considered drawing D in all mentioned cases.

2

The following theorem gives us the exact value of the crossing number of the graph

G + Cn for n ≥ 3.

Theorem 2. cr(G + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2 for n ≥ 3.

Proof. The edge created the cycle Cn can be added into the drawing of G + Pn

in Figure 2 in such a way that the drawing of G + Cn with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2

crossings is obtained. So, cr(G+Cn) ≤ 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2. Using the algorithm

on the website http://crossings.uos.de/, we can prove that cr(G + C3) = 7.

Let us assume that there is a good drawing D of the graph G + Cn with less than

4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2 crossings for n ≥ 4. Thus, at most one edge of Cn can be

crossed and moreover, the edges of Cn do not cross each other (see [10]). Assume

the subgraph D4 + Cn of G + Cn, where D4 consists of the vertices v1, v2, v3, and

v4 (see Figure 1(a)). For x = v1, v2, v3, v4, let T x denote the subgraph of G + Cn

induced by n edges incident with the vertex x.

If none edge of Cn is crossed, then the whole graph G is placed in the same region

in the view of the subdrawing of Cn and so, the edges of T v1 ∪T v2 ∪T v3 ∪T v4 cross

each other at least
(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
times (see [10]). As

(
4
2

) ⌊
n
2

⌋ ⌊
n−1
2

⌋
> 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+⌊

n
2

⌋
+ 1 for n ≥ 4, we have a contradiction with the number of crossing in D.

If the cycle Cn is crossed once, in the considered drawing D, then there are at le-

ast
(
4
2

)⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1 crossings, and we obtain the same contradiction like above.

Thus, in all considered drawings of G+Cn there are more than 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+1

crossings for n ≥ 4. This completes the proof. 2

.3 The crossing number of H + Pn and H + Cn

Let us consider the graph H which consists of one 3-cycle and of two non-adjacent

leaves (see Figure 1(c)). In [2], it was proved that cr(H +Dn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1 also with the help of the combinatorial properties of cyclic permutations.

As we can obtained the drawing of the graph H+Pn with 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings

from the drawing in Figure 3, the next result is obvious.
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v1

v2

v3

v4

v5

Figure 3: A drawing of H + Pn

Theorem 3. cr(H + Pn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 2.

Into the drawing in Figure 3, it is possible to add the edge which forms the

cycle Cn on the path Pn in such a way that Cn is crossed by H just twice. Hence,

the crossing number of the graph H + Cn is at most 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2. By

the same arguments like in Theorem 2, we can prove the reverse inequality for

n ≥ 4. The crossing number of the small graph H +C3 can be computed also using

the algorithm located on the website http://crossings.uos.de/. These results

are collected in the next theorem.

Theorem 4. cr(H + Cn) = 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 2 for n ≥ 3.
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[10] M. Klešč, J. Petrillová and M. Valo. On the crossing numbers of Cartesian

products of wheels and trees. Discuss. Math. Graph Theory, 71 (2017), 339–

413
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