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Abstract. The mathematical model of light propagation in a planar gradient op-
tical waveguide consists of the Maxwell’s equations supplemented by the matter
equations and boundary conditions. In the coordinates adapted to the waveguide
geometry, the Maxwell’s equations are separated into two independent sets for the
TE and TM polarizations. Each of the systems can be transformed to a second
order ordinary differential equation. The boundary conditions for Maxwell’s equa-
tions are reduced to two pairs of boundary conditions for the obtained equations.
Thus, the problem of describing a complete set of modes in a regular planar waveg-
uide is formulated in terms of an eigenvalue problem. For each polarization there
are three types of waveguide modes: guided modes, substrate radiation modes,
and cover radiation modes. In this work we implement the numerical-analytical
calculation of all types of waveguide modes.
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.1 Introduction

Many planar waveguides used in integrated optics, are asymmetric and have a
gradient distribution of refractive index of the waveguide layer as a result of fabri-
cation process. There are exact and approximate analytical methods for simulation
of guided modes in planar waveguides with selected elementary profiles of trans-
verse distribution of refractive index in the guiding layer. In the case of an arbitrary
piecewise continuous profile the approximate calculation of the electromagnetic field
of guided modes is possible only by using numerical methods, implemented on a
computer. On the other hand, the numerical finite-difference (or other equivalent)
method of solving ODE with arbitrary piecewise continuous coefficients can be im-
plemented only in a finite domain of independent variables. This requirement can
be accomplished because in the substrate and in the coating layer with constant
refractive indices ns and nc, the solutions for guided modes are decaying exponen-
tially. This fact, in turn, enables us to reduce the original Dirichlet problem on
the axis to the problem on a segment [x1, x2] of the cross-section of the waveg-
uide layer with boundary conditions of the third kind, depending on the spectral
parameter [1].

The well proven Galerkin method of numerical solution of the boundary value
problem for the second-order ODE (or any other method, generalizing the Galerkin
method) uses complete sets of functions. These sets do not satisfy the boundary
conditions of the third kind, which depend on the spectral parameter and appear
in the formulation of the original problem on the segment. In this case, the classic
monographs [2, 3, 4, 5] on numerical methods for solving mathematical physics
problems recommend to reduce the problem to finding a zero contribution, satis-
fying inconvenient or inhomogeneous boundary conditions. The reduced problem
with homogeneous boundary conditions of the first kind is recommended to be
solved using a wide range of coordinate functions.

In implementing this approach, there are two possibilities: a) n(x1) = n(x2),
and b) n(x1) 6= n(x2). In the case a) as a zero contribution to the solution, one can
consider the solution of an idealized thin film waveguide with (piecewise) continu-
ous refractive index distribution in the cross-section of the waveguide layer. This
problem is studied in many publications [6] – [13], [18] – [22]. In Ref. [26] there is a
detailed description of the complete system of thin-film waveguide modes.

In the case b) as a zero contribution one can consider the solution for the
idealized waveguide with linear refractive index distribution n (x) = ax+ b, where

a = n(x2)−n(x1)
x2−x1

and b = n(x1)x2 − n(x2)x1.
In this paper, we will present detailed study of the complete system of modes of

a planar gradient waveguide with linear refractive index distribution in the cross-
section of the waveguide layer.

To describe the process of propagation of electromagnetic radiation in the in-
tegrated optical waveguides using the method of coupled waves [6, 7], the method
of comparison waveguides [8, 9] and the incomplete Galerkin method [10, 11] it
is necessary to know the complete system of waveguide modes of regular planar



Waveguide Modes of Planar Gradient Optical Waveguide 3

comparison reference waveguide [12, 13], and to be able to use them. In this paper
we consider a particular, but the most common case of a multilayer waveguide.

.2 Formulation of the physical model

In a regular planar gradient optical waveguide, the waveguide modes of three types
can propagate: the guided modes, the substrate radiation modes, and the cover
radiation modes. A regular waveguide consists of a dielectric waveguide layer (one or
more) with the piecewise-linear transverse distribution of refractive index nf (x) (or
nf1 (x) , ..., nfN (x)), surrounded by dielectric media with lower refractive indices:
ns for the substrate layer, and nc for the cover layer. The Cartesian coordinate
system is chosen according to the waveguide structure. The thickness d of the
waveguide layer is comparable to the wavelength of monochromatic electromagnetic
radiation, the thicknesses of the substrate and the cover layers are significantly
greater, and in the model are considered to be infinite.

Figure 1: Waveguide formed by media 1 – 3. The notations are as follows: 1 is a

framing medium or cover layer (air) with the refractive index nc; 2 is a waveguide

layer (film) with the refractive index nf ; 3 is a substrate with refractive index ns; d

is the thickness of the waveguide layer. The film and the substrate are homogeneous

in the y and z directions, the substrate is usually much thicker than the film.

The Maxwell’s equations, supplemented by material equations and boundary
conditions are considered as a model of waveguide propagation of light. With the
use of the geometry and coordinates of Fig. 1, the Maxwell’s equations are reduced
to linearly independent subsystems of equations for TE and TM polarizations.
The variables are separated, and dependence of electromagnetic field of modes on
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all independent variables is written in the form:

(

~E
~H

)

(x, y, z, t) =

(

~E
~H

)

(x) exp {iωt− ik0βz} . (1)

The components TE and TM modes, as functions of x, satisfy the equations:

d2Ey

dx2
+ k20

(

εµ− β2
)

Ey (x) = 0, Hz =
1

ik0µ

dEy

dx
, Hx = −

β

µ
Ey, , (2)

ε
d

dx

(

1

ε

dHy

dx

)

+ k20
(

εµ− β2
)

Hy (x) = 0, Ez = −
1

ik0ε

∂Hy

∂x
, Ex =

β

ε
Hy, , (3)

where ω is the angular frequency, k0 = ω/c, c is the speed of light in vacuum, and
β is the coefficient of phase retardation of the waveguide mode.

Both systems for both mode sets can be written in the ”usual” form in the
dimensionless variables x̃ = k0x = 2π (x/λ0), below written without a tilde:

− p (x)
d

dx

(

1

p (x)

dψ

dx
(k, x)

)

+ V (x)ψ (k, x) = k2ψ (k, x) . (4)

Here p (x) = µ for ψTE (x) = Ey (k0x) and p (x) = ε for ψTM (x) = Hy (k0x),
V (x) = −n2 (k0x) = −ε (k0x)µ is a piecewise continuous (continuous in layers)
function, k2 = −β2 is the spectral parameter.

The boundary conditions are satisfied for the function ψ (x) and for its ”deriva-

tive” φTE (x) = 1
µ
dψTE

dx
(x) and φTM (x) = 1

ε(x)
dψTM

dx
(x):

ψ|1 = ψ|2 , φ|1 = φ|2 . (5)

The task of finding the waveguide modes consists [14] in finding the eigenvalues k
and eigenfunctions ψ (k, x) of the problem (4) – (5) on the axis with the potential
V (x), satisfying the asymptotic conditions:

V (x) −→
x→−∞

Vs, V (x) −→
x→∞

Vc . (6)

The problem (4) – (6) in the notation of (2) – (3) in the case of square-integrable
functions, i.e. in the case of a discrete spectrum kj = iκj for piecewise constant
potential V (x) shown in Fig. 2 (for multilayer waveguide), is a subject of many
studies, both theoretical and computational (see, e.g., the fundamental works on
integrated optics [15] – [17] and books on integrated optics [18] – [22], devoted to
the description of guided waveguide modes). Numerical methods of constructing
the eigenfunctions ψj (x) via the expansion in fundamental sets of solutions of the
equation (4) in each layer and linking them at the interfaces of the layers according
to the relations (5) are implemented in the basic papers on integrated optics [15] –
[17] and in recent papers [23] – [25].
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Figure 2: Schematic diagram of the potential V (x) in the case of multilayer waveg-

uide.

.3 Statement of the problem

The problem of describing the full set of waveguide modes of a regular gradient pla-
nar optical waveguide is formulated as an eigenvalue problem (for discrete and con-
tinuous spectra) and eigenfunction problem (for classical and generalized functions)
of essentially self-adjoint ordinary differential operator of the second order [14, 26]:

− p (x)
d

dx

(

1

p (x)

dψ

dx
(k, x)

)

+ V (x)ψ (k, x) = k2ψ (k, x) . (7)

Here p(x) = µ for ψTE(x) = Ey(k0x) and p(x) = ε for ψTM(x) = Hy(k0x), V (x) =
−n2(k0x) = −ε(k0x)µ is piecewise-linear (linear in layers) function, k2 = −β2 is
the spectral parameter.

With the auxiliary functions

φTE (x) =
1

p (x)

dψTE

dx
(x) , φTM (x) =

1

p (x)

dψTM

dx
(x) (8)

we can write down the reduced boundary conditions at the points of discontinuity
of the potential, and therefore of the second derivative of the solution:

ψ|x1−0 = ψ|x1+0 , ψ|x2−0 = ψ|x2+0 , (9)

φ|x1−0 = φ|x1+0 , φ|x2−0 = φ|x2+0 . (10)

Besides, the asymptotic conditions are satisfied

|ψ (x)|x→±∞
≤ C±. (11)

The spectrum of operator (7) – (11) consists of [12, 13]:
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a finite number of discrete eigenvalues kj = iκj : k
2
j ∈ (minV (x) , min (Vs, Vc))

and the corresponding classical eigenfunctions (of guided waveguide modes);

a single continuous spectrum ks : k
2
s ∈ (Vs, ∞) and the corresponding general-

ized eigenfunctions (substrate radiation modes);

a single continuous spectrum kc : k
2
c ∈ (Vc, ∞) and the corresponding general-

ized eigenfunctions (cover radiation modes).

For a constructive description of the problem solutions, i.e. eigenfunctions of
three types, we shall restrict our consideration to piecewise-linear potential:

V (x) =







Vs, when x < x1
ax+ b, when x1 < x < x2

Vc, when x > x2

, where a =
V2 − V1

x2 − x1
, b =

V1x2 − V2x1

x2 − x1
.

The function V (x) has the view shown in Fig. 3.

x
V (x)

x1 x2

V
−

V1

V2

V+

Figure 3: Schematic diagram of the potential V (x) in the case of gradient waveg-

uide.

.4 The solution for the eigenvalues (of the discrete spec-

trum) and eigenfunctions (classical)

The method of solution is the expansion on the sub-intervals of the general solution
in terms of the fundamental system of solutions.

In the region (−∞, x1) the general solutions of the equation (7) with constant
coefficient Vs and satisfying the asymptotic condition ψ (x) −→

x→−∞

0 are of the form

(for TE and TM modes, respectively):

ψTEs (x) = Cs exp {γs (x− x1)} , φ
TE
s (x) =

γs

µs
Cs exp {γs (x− x1)} , (12)

γs =
√

Vs − k2 > 0 , (13)

ψTMs (x) = Ds exp {γs (x− x1)} , φ
TM
s (x) =

γs

εs
Ds exp {γs (x− x1)} , (14)

γs =
√

Vs − k2 > 0 . (15)
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In the region (x2,∞) the general solutions of the equation (7), satisfying the asymp-
totic condition ψ (x) −→

x→∞

0, have the form:

ψTEc (x) = Cc exp {γc (x− x2)} , φ
TE
c (x) = −

γc

µc
Cc exp {γc (x− x2)} , (16)

γc =
√

Vc − k2 > 0 , (17)

ψTMc (x) = Dc exp {γc (x− x2)} , φ
TM
c (x) = −

γc

εc
Dc exp {γc (x− x2)} , (18)

γc =
√

Vc − k2 > 0 . (19)

In the waveguide layer (with a linear potential in the subdomain) the fundamental
system of solutions consists of the functions Ai (x) and Bi (x). In the region (x1, x2)
the general solutions of the equation (7) have the form (for TE and TM modes,
respectively):

ΨTE
f (k, x) = C1Ai

(

a(x− x2) + b

(−a)2/3

)

+ C2Bi

(

a(x− x2) + b

(−a)2/3

)

, (20)

ΦTEf (k, x) = −C1
(−a)1/3

µ

dAi

dx

(

a(x− x2) + b

(−a)2/3

)

−

− C2
(−a)1/3

µ

dBi

dx

(

a(x− x2) + b

(−a)2/3

)

, (21)

ΨTM
f (k, x) = D1Ai

(

a(x− x2) + b

(−a)2/3

)

+D2Bi

(

a(x− x2) + b

(−a)2/3

)

, (22)

ΦTMf (k, x) = −D1
(−a)1/3

ε

dAi

dx

(

a(x− x2) + b

(−a)2/3

)

−

−D2
(−a)1/3

ε

dBi

dx

(

a(x− x2) + b

(−a)2/3

)

. (23)

These common solutions in the subdomains form a single particular solution of the
problem (7) – (11), therefore, the equalities must be satisfied:

Ψs (k, x1) = Ψf (k, x1) , Φs (k, x1) = Φf (k, x1) ,

Ψf (k, x2) = Ψc (k, x2) , Φf (k, x2) = Φc (k, x2) .

Thus we obtain a homogeneous system of linear algebraic equations for the indefi-
nite coefficients of the expansion of common solutions in terms of the fundamental
systems of solutions, which for the TE modes has the form:

Cs = C1Ai





−ad+ b

(−a)
2/3



+ C2Bi





−ad + b

(−a)
2/3



 ,
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γs
1

µ
Cs = −C1

1

µ
(−a)

1/3 dAi

dx





−ad + b

(−a)
2/3



− C2
1

µ
(−a)

1/3 dBi

dx





−ad + b

(−a)
2/3



 ,

C1Ai





b

(−a)
2/3



+ C2Bi





b

(−a)
2/3



 = Cc ,

−C1
1

µ
(−a)

1/3 dAi

dx





b

(−a)
2/3



− C2
1

µ
(−a)

1/3 dBi

dx





b

(−a)
2/3



 = −γc
1

µ
Cc .

The resulting homogeneous system of linear algebraic equations

M̂TE (k) ~C (k) = ~0 (24)

has a non-trivial solution provided that

det M̂TE (k) = 0 . (25)

The homogeneous system of linear algebraic equations for the unknown coefficients
of the expansion of common solutions in terms of the fundamental system of solu-
tions for the TM modes has the form:

Ds = D1Ai





−ad + b

(−a)
2/3



+D2Bi





−ad + b

(−a)
2/3



 ,

γs
1

ε
Ds = −D1

1

ε
(−a)

1/3 dAi

dx





−ad + b

(−a)
2/3



−D2
1

ε
(−a)

1/3 dBi

dx





−ad + b

(−a)
2/3



 ,

D1Ai





b

(−a)
2/3



+D2Bi





b

(−a)
2/3



 = Dc ,

−D1
1

ε
(−a)

1/3 dAi

dx





b

(−a)
2/3



−D2
1

ε
(−a)

1/3 dBi

dx





b

(−a)
2/3



 = −γc
1

ε
Dc .

The resulting homogeneous system of linear algebraic equations

M̂TM (k) ~D (k) = ~0 (26)

has a non-trivial solution provided that

det M̂TM (k) = 0 . (27)

The solutions kTEj of the nonlinear transcendental algebraic equation (25)are substi-

tuted into the SLAE (24) and then this system is solved with respect to ~Cj = ~C (kj).
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Figure 4: The curves for the field strength (along the vertical axis) corresponding to

the first spectral values for the guided modes TE0, nc = 1.0, nf = 2.15, ns = 1.515,

β = 1.6752.
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Figure 5: The curves for the field strength (along the vertical axis) corresponding to

the first spectral values for the guided modes TM0, nc = 1.0, nf = 2.15, ns = 1.515,

β = 1.5955.
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The obtained coefficients are substituted in the expressions (12), (16), (20), (21)
for the fields. The results of calculations are presented in Fig. 4.

The solutions kTMj of the nonlinear transcendental algebraic equation (27) are

substituted in the SLAE (26) and then this system is solved with respect to ~Dj =
~D (kj). The obtained coefficients are substituted in the expressions (14), (18), (22),
(23) for the fields. The results of calculations are presented in Fig. 4.

The results and the method for calculating the eigenvalues kTEj and eigenvec-

tors
(

As, A
+
f , A

−

f , Ac
)T

, as well as kTMj and
(

Bs, B
+
f , B

−

f , Bc

)T
for thin-film planar

optical waveguides are described in publications [15] – [17] and monographs [18] –
[22]. These works also report the results of many numerical experiments. A brief
presentation of the method can be found in [26, 27]. There one can find also nu-
merical implementations on a computer of dispersion relations for TE modes and
corresponding distributions with respect to Ox axis of electric and magnetic fields
of nonzero components for TE modes.

.5 Calculation of cover radiation modes

Similarly to what was done in [14, 26] for piecewise-constant potentials, let’s move
from the solutions of the problem (7) - (11) satisfying the asymptotic Jost condi-
tions, to the solutions satisfying the ”scattering problem” conditions. A one-to-one
correspondence between them is set in [14, 26] for the potentials of a more general
kind.

In particular, the asymptotic behavior of the cover radiation modes ψc (k, x) cor-
respond to the problem of scattering of a plane Jost wave incident on the potential
V (x) from the right, which is partially reflected back to the right with reflection
coefficient R− (k), and partially transmitted (through the potential V (x)) to the
left with the transmittance coefficient T− (k), taking the form of a plane Jost wave
propagating from right to left in the region x > −∞. All solutions ψc (k, x) satisfy
these asymptotic conditions when k2 ∈ (Vc, ∞). The sought solution, as in the
case of guided modes, is constructed by joining at the boundaries of the general
solutions of the equation (8) in the regions of the argument (−∞, x1), (x1, x2), and
(x2,∞).

Hence, in the region (−∞, x1) the general solutions of Eq. (7) with the constant
coefficient Vs and the auxiliary functions have the form (for TE and TM modes,
respectively):

ψTEc,s (k, x) = T TEc (k) exp {−ips (x− x1)} ,

φTEc,s (k, x) = −
ips

µs
T TEc (k) exp {−ips (x− x1)} ,

ψTMc,s (k, x) = T TMc (k) exp {−ips (x− x1)} ,

φTMc,s (k, x) = −
ips

εs
T TMc (k) exp {−ips (x− x1)} .
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In the region (x1, x2) the general solutions of the equation (7) and the auxiliary
functions have the form (for TE and TM modes, respectively):

ΨTE
c,f (k, x) = C1

c

1

µ
Ai

(

a(x− x2) + b

(−a)2/3

)

+ C2
c

1

µ
Bi

(

a(x− x2) + b

(−a)2/3

)

,

ΦTEc,f (k, x) = −C1
c

1

µ
(−a)1/3

dAi

dx

(

a(x− x2) + b

(−a)2/3

)

−

− C2
c

1

µ
(−a)1/3

dBi

dx

(

a(x− x2) + b

(−a)2/3

)

, (28)

ΨTM
c,f (k, x) = D1

cAi

(

a(x− x2) + b

(−a)2/3

)

+D2
cBi

(

a(x− x2) + b

(−a)2/3

)

,

ΦTMc,f (k, x) = −D1
c (−a)

1/3dAi

dx

(

a(x− x2) + b

(−a)2/3

)

−

−D2
c (−a)

1/3dBi

dx

(

a(x− x2) + b

(−a)2/3

)

. (29)

Thus, the solutions (for TE modes) are given by the sets of amplitude coefficients
(T TEc , C1

c , C
2
c , R

TE
c )T satisfying the system of linear algebraic equations:

T TEc (k) = C1
cAi





−ad + b

(−a)
2/3



 + C2
cBi





−ad + b

(−a)
2/3



 ,

−
ips

µs
T TE
−

(k) = −C1
f

1

µ
(−a)

1/3 dAi

dx





−ad+ b

(−a)
2/3



− C2
f

1

µ
(−a)

1/3 dBi

dx





−ad + b

(−a)
2/3



 ,

C1
cAi





b

(−a)
2/3



 + C2
cBi





b

(−a)
2/3



 = 1 +RTE
c (k) ,

−C1
c

1

µ
(−a)

1/3 dAi

dx





b

(−a)
2/3



− C2
c

1

µ
(−a)

1/3 dBi

dx





b

(−a)
2/3



 =

= −
ipc

µc

[

1− RTE
c (k)

]

.

The solutions for TM modes are given by the sets of amplitude coefficients
(

T TMc , D1
c , D

2
c , R

TM
c

)T

satisfying the system of linear algebraic equations:

T TMc (k) = D1
cAi





−ad + b

(−a)
2/3



+D2
cBi





−ad+ b

(−a)
2/3



 ,
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−
ips

εs
T TMc (k) = −D1

f

1

ε
(−a)

1/3 dAi

dx





−ad + b

(−a)
2/3



−D2
f

1

ε
(−a)

1/3 dBi

dx





−ad + b

(−a)
2/3



 ,

D1
cAi





b

(−a)
2/3



+D2
cBi





b

(−a)
2/3



 = 1 +RTM
c (k) ,

−D1
c

1

ε
(−a)

1/3 dAi

dx





b

(−a)
2/3



−D2
c

1

ε
(−a)

1/3 dBi

dx





b

(−a)
2/3



 =

= −
ipc

εc

[

1− RTM
c (k)

]

.

In both cases, we arrive at the inhomogeneous SLAE of the form:

M̂TE(k)
(

T TEc , C1
c , C

2
c , R

TE
c

)T
=

(

0, 0, 1,−
ipc

µc

)T

,

M̂TM (k)
(

T TMc , D1
c , D

2
c , R

TM
c

)T
=

(

0, 0, 1,−
ipc

εc

)T

,

so that the solution exists for any k2 ∈ (Vc,∞) and is unique up to a complex factor
(see Fig. 6 for the case of TE-modes). The plots of the solutions for TM-modes
qualitatively repeat the plots shown in Fig. 7.

−15 −10 −5 0 5 10 15−1.5
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Figure 6: The curves for the field strength (along the vertical axis) corresponding

to the first spectral values for the cover radiation modes, nc = 1.0, nf = 1.59,

ns = 1.515, k2 = 0.250

Cover radiation modes are described in [12, 13, 28, 29], as generalized eigenso-
lutions of Eq. (7) with the boundary conditions (9), (10) for the values of spectral
parameter k ∈ (Vc,∞). They are, as in the case of guided modes, built by linking at
the boundaries of the general solutions of Eq. (7) in the argument regions (−∞, x1),
(x1, x2), and (x2,∞). The solution of the problem of scattering on the potential
V (x) with similar asymptotic behavior is described in [31, 32].
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Figure 7: The curves for the field strength (along the vertical axis) corresponding

to the first spectral values for the cover radiation modes, nc = 1.0, nf = 1.59,

ns = 1.515, k2 = 0.250.

.6 Calculation of substrate radiation modes

The asymptotic behavior of the substrate radiation modes ψs (k, x) correspond to
the scattering of a plane Jost wave incident from the left, on the potential V (x). The
wave is partially reflected to the left with the reflection coefficient Rs (k). At the
same time, the Jost wave coming from the left, passing through the potential V (x),
propagates to the right as the plane Jost wave with the transmittance coefficient
Ts (k) when k

2 ∈ (Vc, ∞), and as an evanescent wave decaying to the right with a
weighting factor Cc(k)(Dc(k)) when k

2 ∈ (Vs, Vc).
The solutions have different form for different values of the spectral parameter

k belonging to the spectral subregions k2 ∈ (Vs, Vc) and k
2 ∈ (Vc,∞). But for both

regions the solution, as in the case of guided modes, is constructed by joining at
the boundaries of the general solutions of Eq. (7) in the regions of the argument
(−∞, x1), (x1, x2), and (x2,∞).

In the region (−∞, x1) the general solutions of Eq. (7) with the spectral param-
eter k2 ∈ (Vs, Vc) have the form:

ψTEs,s (k, x) = exp {ips (k) (x− x1)}+RTE
s (k) exp {−ips (k) (x− x1)} ,

φTEs,s (k, x) =
ips

µs

[

exp {ips (k) (x− x1)} − RTE
s (k) exp {−ips (k) (x− x1)}

]

,

ψTMs,s (k, x) = exp {ips (k) (x− x1)}+RTM
s (k) exp {−ips (k) (x− x1)} ,

φTMs,s (k, x) =
ips

εs

[

exp {ips (k) (x− x1)} − RTM
s (k) exp {−ips (k) (x− x1)}

]

.

In the region (x1, b) the general solutions of Eq. (7) with the spectral parameter
k2 ∈ (Vs, Vc) have the form:

ΨTE
s,f (k, x) = C1

sAi

(

a(x− x2) + b

(−a)2/3

)

+ C2
sBi

(

a(x− x2) + b

(−a)2/3

)

,
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ΦTEs,f (k, x) = −C1
s

(−a)1/3

µ

dAi

dx

(

a(x− x2) + x2

(−a)2/3

)

−

− C2
s

(−a)1/3

µ

dBi

dx

(

a(x− x2) + b

(−a)2/3

)

, (30)

ΨTM
s,f (k, x) = D1

sAi

(

a(x− x2) + b

(−a)2/3

)

+D2
sBi

(

a(x− x2) + b

(−a)2/3

)

,

ΦTMs,f (k, x) = −D1
s

(−a)1/3

εf

dAi

dx

(

a(x− x2) + x2

(−a)2/3

)

−

− C2
s

(−a)1/3

εf

dBi

dx

(

a(x− x2) + b

(−a)2/3

)

. (31)

In the region (x2,∞) the general solutions of Eq. (7) with the spectral parameter
k2 ∈ (Vs, Vc) have the form (by virtue of the asymptotic decay at infinity):

ψTEs,c (k, x) = CTE
s exp {−γc (x− x2)} , φ

TE
s,c (k, x) = −

γc

µc
CTE
s exp {−γc (x− x2)} ,

ψTMs,c (k, x) = DTM
s exp {−γc (x− x2)} , φ

TM
s,c (k, x) = −

γc

εc
DTM
s exp {−γc (x− x2)} .

Thus, the solutions (for TE and TM modes, respectively) are given by the sets of

amplitude coefficients
(

RTE
s , C1

s , C
2
s , C

TE
s

)T
satisfying the system of linear algebraic

equations:

1 +RTE
s (k) = C1

sAi





−ad + b

(−a)
2/3



+ C2
sBi





−ad+ b

(−a)
2/3



 ,

ips

µs

[

1−RTE
s (k)

]

= −
C1
s

µ
(−a)

1/3 dAi

dx





−ad + b

(−a)
2/3



−
C2
s

µ
(−a)

1/3 dBi

dx





−ad+ b

(−a)
2/3



 ,

C1
sAi





b

(−a)
2/3



+ C2
sBi





b

(−a)
2/3



 = CTE
s ,

−C1
s

1

µ
(−a)

1/3 dAi

dx





b

(−a)
2/3



− C2
s

1

µ
(−a)

1/3 dBi

dx





b

(−a)
2/3



 = −
γc

µc
CTE
s ,

and the coefficients
(

RTM
s , D1

s , D
2
s , D

TM
s

)T
satisfying the system of linear algebraic

equations:

1 +RTM
s (k) = D1

sAi





−ad+ b

(−a)
2/3



+D2
sBi





−ad + b

(−a)
2/3



 ,
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ips

εs

[

1−RTM
s (k)

]

= −
D1
s

ε
(−a)

1/3 dAi

dx





−ad + b

(−a)
2/3



−
D2
s

ε
(−a)

1/3 dBi

dx





−ad + b

(−a)
2/3



 ,

D1
sAi





b

(−a)
2/3



+D2
sBi





b

(−a)
2/3



 = DTM
s ,

−D1
s

1

εf
(−a)

1/3 dAi

dx





b

(−a)
2/3



−D2
s

1

εf
(−a)

1/3 dBi

dx





b

(−a)
2/3



 = −
γc

εc
DTM
s .

In both cases we arrive at the inhomogeneous SLAE of the form

M̂TE (k)
(

RTE
s , C1

s , C
2
s , C

TE
s

)T
=

(

1,
ips

µs
, 0, 0

)T

,

M̂TM (k)
(

RTM
s , D1

s , D
2
s , D

TM
s

)T
=

(

1,
ips

εs
, 0, 0

)T

,

so that there exists a solution for any k2 ∈ (Vs, Vc) and it is unique up to a complex
multiplier (Fig. 8, 9).

−15 −10 −5 0 5 10 15−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

 x1  x2

Re(ψTE)

Im(ψTE)

Figure 8: The curves for the field strength (along the vertical axis) for the substrate

radiation modes decaying in the cover layer: nc = 1.0, nf = 1.59, ns = 1.515,

k2 = −1.648.

For the spectral parameter k from the region k2 ∈ (Vc,∞), in the coordinate
regions (−∞, x1) and (x1, x2) the common solutions have the same form as in the
case k2 ∈ (Vs, Vc), and in the region (x2,∞), they take the form:

ψTEs,c (k, x) = T TEs (k) exp {ipc (k) (x− x2)} ,

, φTEs,c (k, x) =
ipc (k)

µc
T TEs (k) exp {ipc (k) (x− x2)} ,

ψTMs,c (k, x) = T TMs (k) exp {ipc (k) (x− x2)} ,

φTMs,c (k, x) =
ipc (k)

εc
T TMs (k) exp {ipc (k) (x− x2)} .
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Figure 9: The curves for the field strength (along the vertical axis) for the substrate

radiation modes decaying in the cover layer: nc = 1.0, nf = 1.59, ns = 1.515,

k2 = −1.648.

Consequently, the second pair of boundary equations at the point x = x2 for TE
modes takes the form:

C1
sAi





b

(−a)
2/3



+ C2
sBi





b

(−a)
2/3



 = T TEs (k) ,

−C1
s

1

µ
(−a)

1/3 dAi

dx





b

(−a)
2/3



−C2
s

1

µ
(−a)

1/3 dBi

dx





b

(−a)
2/3



 =
ipc (k)

µc
T TEs (k) .

The resulting SLAE can be rewritten as:

M̂TE (k)
(

RTE
s , C1

s , C
2
s , T

TE
s

)T
=

(

1,
ips

µs
, 0, 0

)T

,

so that there exists a solution for any k2 ∈ (Vc,∞) and it is unique up to a complex
multiplier (Fig. 10).

The second pair of boundary equations at the point x = x2 for TM modes take
the form:

D1
sAi





b

(−a)
2/3



+D2
sBi





b

(−a)
2/3



 =
ipc (k)

εc
T TMs (k) ,

−
D1
s

εf
(−a)

1/3 dAi

dx





b

(−a)
2/3



−
D2
s

εf
(−a)

1/3 dBi

dx





b

(−a)
2/3



 =
ipc (k)

εc
T TMs (k) .

The resulting SLAE can be rewritten as

M̂TM (k)
(

RTM
s , C1

s , C
2
s , T

TM
s

)T
=

(

1,
ips

εs
, 0, 0

)T

,
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Figure 10: The curves for the field strength (along the vertical axis) for the substrate

radiation modes oscillating in the cover layer: nc = 1.0, nf = 1.59, ns = 1.515,

k2 = 0.250.
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Figure 11: The curves for the field strength (along the vertical axis) for the substrate

radiation modes oscillating in the cover layer: nc = 1.0, nf = 1.59, ns = 1.515,

k2 = 0.250.
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so that there exists a solution for any k2 ∈ (Vc,∞) and it is unique up to a complex
multiplier factor. The solutions of this system qualitatively repeat the solutions
shown in Fig. 11.

.7 Conclusion

The solution of many problems of integrated optics includes spectral analysis and
spectral synthesis for a complete system of solutions for second-order differential
operator defining waveguide modes of an open waveguide. In the simplest case
of a regular waveguide the operator is essentially self-adjoint and has a mixed
spectrum: the final single discrete spectrum and two branches of the continuous
spectrum [12, 13]. This full system of modes is used to describe the waveguide
propagation of electromagnetic radiation using methods of reference waveguides,
which can also be used to implement the incomplete Galerkin method in integrated
optical waveguides.

This paper presents the numerical implementations of square-integrable eigen-
functions corresponding to the discrete spectrum kj = iκj for a piecewise-linear
potential V (x) (for the gradient waveguide). The present study also shows the
numerical computer implementations of the cover radiation modes and substrate
radiation modes. For modeling these modes, the problems of scattering on the
potential V (x) of Jost functions equivalent to the original problem in the case of
the continuous spectrum were used: the problems of scattering on the left for the
substrate radiation modes and the problems of scattering on the right for the cover
radiation modes.
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