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Abstract. Finding minimum necessary intersections in graph representations is
useful in many areas. The most prominent areas are automated graph drawings
and VLSI-layouts. The exact value of the crossing number is known only for
few classes of graphs, mainly with regular structure such as various products
of graphs. Among the products of graphs, the Cartesian product has received
great attention in the mathematical publications. Klešč, Jendrol’ and Ščerbová
determined the crossing numbers of Cartesian products of paths with all graphs
of order at most four and with all connected graphs on five vertices. Moreover, the
crossing numbers of Cartesian products of paths with some graphs of order six are
known. In the paper, we extend these results by determining crossing numbers of
Cartesian products G2Pn for several other graphs G on six vertices.
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.1 Introduction

Let G be a simple graph with vertex set V and edge set E. A drawing of the graph
G is a representation of G in the plane such that its vertices are represented by
distinct points and its edges by simple continuous arcs connecting the corresponding
point pairs. In such a drawing, the intersection of the interiors of the arcs is called
a crossing. We assume that in a drawing no edge passes through any vertex other
than its end-points, no two edges touch each other (i.e., if two edges have a common
interior point, then they cross properly at this point), and no three edges cross at
the same point. It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing, meaning that no edge crosses itself,
no two edges cross more than once, and no two edges incident with the same vertex
cross each other. The crossing number cr(G) of a simple graph G with vertex
set V (G) and edge set E(G) is defined as the minimum possible number of edge
crossings in a good drawing of G in the plane. Let D be a good drawing of the
graph G. We denote the number of crossings in D by crD(G). Let Gi and Gj be
edge-disjoint subgraphs of G. We denote by crD(Gi, Gj) the number of crossings
between edges of Gi and edges of Gj , and by crD(Gi) the number of crossings
among edges of Gi in D. Let G1 and G2 be simple graphs with vertex sets V (G1)
and V (G2), and edge sets E(G1) and E(G2), respectively. The Cartesian product
G12G2 of the graphs G1 and G2 has vertex set V (G12G2) = V (G1)× V (G2) and
two vertices (u, u′) and (v, v′) are adjacent in G12G2 if and only if either u = v and
u′ is adjacent with v′ in G2, or u

′ = v′ and u is adjacent with v in G1. Let Cn be the
cycle of length n, Pn be the path of length n, and Sn be the star isomorphic to K1,n.
In the proofs of the paper, we will often use the term “region” also in nonplanar
drawings. In this case, crossings are considered to be vertices of the “map”.

The crossing number of a graph is an important property, which can be employed
in computer science in many areas. The most prominent areas are automated graph
drawings and VLSI-layouts. It is well known that the problem of determination of
the crossing numbers of graphs is NP-complete (see [3]) and it remains NP–hard
even for cubic graphs [4]. The lower bound on the chip area is determined by cross-
ing number and by number of vertices of the graph [1, 11]. It plays an important role
in various fields of discrete/computational geometry [12]. The crossing number is
also a parameter yielding the deviation of the graph from being planar. The crossing
number significantly influences readability and therefore it is the most important
parameter when considering aesthetics of a graph. It is mostly used in automated
visualisation of graphs.

In the next sections, we give the crossing numbers of Cartesian products of
paths with four graphs on six vertices shown in Fig. 1.

.2 Preliminary results

In this section, we will prove some lemmas, which help us to give the crossing
numbers of Cartesian products of paths with four graphs G, H , J1 and J2 on six
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Figure 1: The graphs G, H, J1 and J2 on six vertices.

vertices shown in Fig. 1. We assume n ≥ 1 and find it convenient to consider
the graph G2Pn in the following way: it has 6(n + 1) vertices and edges that
are the edges in n + 1 copies Gi, i = 0, 1, . . . , n, of graph G and in six paths of
length n, see Fig. 2(a). For i = 0, 1, . . . , n, let ai, bi and ci be the vertices of Gi

of degree two, di the vertex of degree three, ei the vertex of degree four, and fi
the vertex of degree one (see Fig. 1(a)). Let us denote by M i

G the subgraph of
G2Pn containing the vertices of Gi−1 and Gi and six edges joining Gi−1 to Gi,
i = 1, 2, . . . , n. Let Qi

G, i = 1, 2, . . . , n− 1, denote the subgraph of G2Pn induced
by V (Gi−1) ∪ V (Gi) ∪ V (Gi+1). So, Qi

G = Gi−1 ∪M i
G ∪Gi ∪M i+1

G ∪Gi+1.

(a) (b)

Figure 2: The graphs G2Pn and H2Pn.

Similarly, the graph H2Pn has 6(n + 1) vertices and edges that are the edges
in n + 1 copies H i of graph H and six paths of length n, see Fig. 2(b). For
i = 0, 1, . . . , n, let ai and bi be the vertices ofH

i of degree two, ci, di and ei the vertex
of degree three, and fi the vertex of degree one (see Fig. 1(b)). For i = 1, 2, . . . , n,
let M i

H denote the subgraph of H2Pn consisting of the vertices in H i−1 and H i and
of the edges joining H i−1 with H i, and let Qi

H = H i−1 ∪M i
H ∪H i ∪M i+1

H ∪H i+1.

Both graphsG2Pn andH2Pn containK2,32Pn as a subgraph. For i = 0, 1, . . . , n,
let Ki

2,3 denote the complete bipartite subgraph of the graph K2,32Pn and let M i
K

denote the corresponding subgraph of M i
G or M i

H . For i = 0, 1, . . . , n, let ai, bi
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and ci be the vertices of Ki
2,3 of degree two, and di and ei the vertices of degree

three. In a good drawing D, we say that a graph Ki
2,3 separates the graphs Kk

2,3

and K l
2,3 (the vertices of a graph Kk

2,3) if there exists a cycle C of Ki
2,3 such that

Kk
2,3 and K l

2,3 (the vertices of a graph Kk
2,3) are contained in different components

of R2 \C. Consider the graph K2,32P2 which is a subgraph of Qi
G in G2Pn as well

as a subgraph of Qi
H in H2Pn, i = 1, 2, . . . , n− 1. The following results enable us

to simplify the proofs in the next sections.

Lemma 1. Let D be a good drawing of the graph K2,32Pn, n ≥ 2, in which each

of the complete bipartite graphs Ki−1

2,3 , Ki
2,3, and Ki+1

2,3 , i = 1, 2, . . . , n − 1, has at

most two crossings on its edges. Then Ki−1

2,3 does not separate Ki
2,3 and Ki+1

2,3 , Ki+1

2,3

does not separate Ki
2,3 and Ki−1

2,3 , and if Ki
2,3 has an internal crossing, Ki

2,3 does

not separate Ki−1

2,3 and Ki+1

2,3 .

Proof. If Ki−1

2,3 separates Ki
2,3 and Ki+1

2,3 (if Ki+1

2,3 separates Ki
2,3 and Ki−1

2,3 ), then

the graph Ki−1

2,3 (Ki+1

2,3 ) is crossed by all five edges joining the separated graphs.

This contradicts the assumption that every graph Ki
2,3 has at most two crossings

on its edges. It remains to show that Ki
2,3 does not separate K

i−1

2,3 and Ki+1

2,3 if Ki
2,3

has an internal crossing. Without loss of generality, let Ki−1

2,3 is placed inside Ki
2,3.

The subdrawing of Ki
2,3 induced by D divides the plane in such a way that on the

boundary of every region inside Ki
2,3 there are at most three vertices of Ki

2,3. Thus,

one of graphs Ki−1

2,3 and M i
K crosses Ki

2,3 at least twice. So, the number of crossings

on the edges of Ki
2,3 is at least three, a contradiction. 2

Lemma 2. Let D be a good drawing of the graph K2,32Pn, n ≥ 2, in which each of

the complete bipartite graphs Ki−1

2,3 , Ki
2,3, and Ki+1

2,3 , i = 1, 2, . . . , n− 1, has at most

two crossings on its edges and none of them separates two other. Then Ki−1

2,3 , K
i
2,3

and Ki+1

2,3 do not cross each other.

Proof. Assume a good drawing D of the graph K2,32Pn, n ≥ 2, in which each

of the complete bipartite graphs Ki−1

2,3 , Ki
2,3, and Ki+1

2,3 , i = 1, 2, . . . , n − 1, has

at most two crossings on its edges and none of them separates two other. If two

of the 2-connected graphs Ki−1

2,3 , Ki
2,3, and Ki+1

2,3 cross, then they cross at least

twice. So, none of Ki−1

2,3 , K
i
2,3, and Ki+1

2,3 crosses both others. Moreover, if two

graphs of Ki−1

2,3 , Ki
2,3, and Ki+1

2,3 cross, then none of them has an internal crossing.

If crD(K
i
2,3, K

i−1

2,3 ) 6= 0, then the subdrawing of Ki
2,3 induced by D divides the

plane as shown in Fig. 3(a) and, as crD(K
i
2,3, K

i+1

2,3 ) = 0, in D at least one edge

of M i+1

K joining Ki
2,3 to Ki+1

2,3 crosses Ki
2,3. This contradicts the assumption of at

most two crossings on the edges of Ki
2,3. The same contradiction is obtained if

crD(K
i
2,3, K

i+1

2,3 ) 6= 0. The last possibility is that crD(K
i−1

2,3 , Ki−1

2,3 ) 6= 0. In this case

Ki−1

2,3 divides the plane as shown in Fig. 3(a) and at least one edge of M i
K crosses

Ki−1

2,3 . This contradiction completes the proof. 2
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Figure 3: The unique planar drawing of K2,3 and the graph K1
2,3 ∪M2

K ∪K2
2,3 without

the edge b1b2.

Lemma 3. Let D be a good drawing of the graph K2,32P2 in which every subgraph

Ki
2,3, i = 0, 1, 2, has at most two crossings on its edges. If the subgraphs K0

2,3,

K1
2,3, and K2

2,3 do not cross each other and none of them separates two other, then

crD(K
1
2,3) + crD(K

1
2,3,M

1
K ∪M2

K) + crD(K
0
2,3 ∪M1

K , K
2
2,3 ∪M2

K) ≥ 3.

Proof. Assume that there is a good drawing D of the graph K2,32P2 in which two

different complete bipartite graphs do not cross each other and none of the graphs

K0
2,3, K

1
2,3 and K2

2,3 separates two other and that crD(K
1
2,3)+crD(K

1
2,3,M

1
K ∪M2

K)+

crD(K
0
2,3∪M

1
K , K

2
2,3∪M

2
K) ≤ 2. As K2,3 is not outerplanar graph, either K

1
2,3 has an

internal crossing or K1
2,3 crosses M1

K ∪M2
K at least twice. In the first case, at least

one of K0
2,3 ∪M1

K and M2
K ∪K2

2,3 does not cross K1
2,3. Without loss of generality,

let crD(K
1
2,3, K

0
2,3 ∪M1

K) = 0. Then the subdrawing of K0
2,3 ∪ M1

K ∪ K1
2,3 induced

by D divides the plane in such a way that on the boundary of every region outside

K1
2,3 there are at most two vertices of K1

2,3. The complete bipartite graph K2
2,3

does not cross an edge of the 2-connected subgraph K0
2,3 ∪ M1

K ∪ K1
2,3, otherwise

crD(K
2
2,3, K

0
2,3 ∪M1

K ∪K1
2,3) ≥ 2 and crD(K

1
2,3) + crD(K

1
2,3,M

1
K ∪M2

K) + crD(K
0
2,3 ∪

M1
K , K

2
2,3 ∪ M2

K) ≥ 3, a contradiction. Thus, K2
2,3 is placed in one region outside

K1
2,3. But, in this case, at least two edges of M2

K joining K2
2,3 with the vertices of

K1
2,3 cross the edges of K0

2,3 ∪ M1
K ∪ K1

2,3 and crD(K
1
2,3) + crD(K

1
2,3,M

1
K ∪ M2

K) +

crD(K
0
2,3 ∪ M1

K , K
2
2,3 ∪ M2

K) ≥ 3. This forced that crD(K
1
2,3) = 0 and that K1

2,3

crosses M1
K ∪ M2

K at least twice. As K1
2,3 does not have an internal crossing, its

unique planar drawing is shown in Fig. 3(a). Without loss of generality, let the edge

b1b2 of M2
K crosses K1

2,3. The unique subdrawing of (K1
2,3 ∪ M2

K ∪ K2
2,3) r {b1b2}

in Fig. 3(b) shows that on the boundary of every region outside K1
2,3 there are at

most two vertices of K1
2,3. Thus, as only one edge of M1

K can cross K1
2,3, it is easy

to see that crD(K
0
2,3 ∪M1

K , K
2
2,3 ∪M2

K) 6= 0 and the proof is done. 2
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.3 The crossing number of G2Pn

The crossing number of the graph G2P1 is two, because it contains K2,32P1 as

a subgraph and cr(K2,32P1) = 2 (see [8]). The reverse inequality cr(G2P1) ≤ 2

implies from a suitable drawing of the graph G2P1 with two crossings. In Fig. 2(a)

there is the drawing of the graph G2Pn with 3n − 1 crossings. The next result is

fundamental in proving that the crossing number of the graph G2Pn is 3n− 1 for

n ≥ 2.

Lemma 4. If D is a good drawing of the graph G2Pn, n ≥ 2, in which each of the

subgraphs Gi, i = 0, 1, 2, ..., n, has at most two crossings on its edges, then in D

there are at least 3n− 1 crossings.

Proof. In a drawing of the graph G2Pn, let us consider the following types of

possible crossings on the edges of Qi
G for all i = 1, 2, ..., n− 1:

(1) a crossing of an edge in Gi−1 ∪M i
G with an edge in Gi+1 ∪M i+1

G ,

(2) a crossing of an edge in M i
G ∪M i+1

G with an edge in Gi,

(3) a crossing among the edges of Gi.

It is readily seen that each of the considered crossings appears in a good drawing

of the graph G2Pn only on the edges of one subgraph Qi
G. Consider now a good

drawing D of G2Pn satisfying the assumptions in Lemma 4. By Lemma 1, in the

subdrawing D(Qi
G) of the subgraph Qi

G induced by D, i = 1, 2, . . . , n − 1, Ki−1

2,3

does not separate Ki
2,3 and Ki+1

2,3 , Ki+1

2,3 does not separate Ki
2,3 and Ki−1

2,3 , and if

Ki
2,3 has an internal crossing, Ki

2,3 does not separate Ki−1

2,3 and Ki+1

2,3 . It remains to

prove that Ki
2,3 does not separate Ki−1

2,3 and Ki+1

2,3 if Ki
2,3 has the planar drawing.

Let Ki
2,3 separate Ki−1

2,3 and Ki+1

2,3 , and Ki
2,3 has the planar drawing. Then a path

ei−1fi−1fifi+1ei+1 crosses the edges of Ki
2,3 at least once. Hence, the assumption of

at most two crossings on Ki
2,3 forced that none of Ki−1

2,3 and Ki+1

2,3 crossed Ki
2,3. The

unique planar drawing of Ki
2,3 in Fig. 3(a) divides the plane in such a way that on

the boundary of every region Ki
2,3 there are at most four vertices of Ki

2,3. If the

graphs Ki−1

2,3 and Ki+1

2,3 are placed in different regions of Ki
2,3, the graph M i

K ∪M i+1

K

crosses Ki
2,3 at least twice. Thus, the graph Ki

2,3 has at least three crossings on its

edges and this contradicts the assumption that every subgraph Gi has at most two

crossings on its edges. Thus, none of the complete bipartite graphs Ki−1

2,3 , K
i
2,3 and

Ki+1

2,3 separates two other and by Lemma 2, they do not cross each other.

So, by Lemma 3, every subdrawing D(Qi
G), i = 1, 2, . . . , n − 1, contains at

least three crossings, every of types (1), (2) or (3). This enforces that, there are

at least
∑n−1

i=1
crD(Q

i
G) = 3(n − 1) crossings among the edges of the subgraph

G0 ∪M1
G ∪G1 ∪ · · · ∪Gn−1 ∪Mn

G ∪Gn, in D. It remains to prove that, in D, every
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of the subgraphs Q1
G and Qn−1

G has at least one crossings which is not counted in
∑n−1

i=1
crD(Q

i
G). If it is true, then in D there are at least 3n − 1 crossings and we

are done.

Consider the subgraph Q1
G. We have shown above, that the complete bipartite

graphs K0
2,3, K

1
2,3 and K2

2,3 do not cross each other and none of them separates two

other. So, by Lemma 3, the subdrawing D(Q1
G) contains at least three crossings of

types (1), (2) or (3). The aim of this part of the proof is to show that there is at least

one crossing not counted in
∑n−1

i=1
crD(Q

i
G). If the subgraph K0

2,3 has an internal

crossing, we are done. Otherwise its unique planar drawing in Fig. 3(a) shows that

there is at least one crossing between the edges of K0
2,3 and the edges of M1

G. This

crossing is not counted in
∑n−1

i=1
crD(Q

i
G). The same holds for the subgraph Qn−1

G

and so, in D there are at least
∑n−1

i=1
crD(Q

i
G)+2 = 3(n−1)+2 = 3n−1 crossings.

This completes the proof.

2

Now we are able to give tha exact value of the crossing number for the graph

G2Pn.

Theorem 1. cr(G2Pn) = 3n− 1 for n ≥ 1.

Proof. The drawing in Fig. 2(a) shows that cr(G2Pn) ≤ 3n − 1, because every

copy of Gi, i = 1, 2, 3, ..., n− 1, is crossed three times, G0 and Gn are crossed once

and there is no other crossing in the drawing. We prove the reverse inequality by

induction on n. The graph K2,32P1 is a subgraph of G2P1 and we know that

cr(K2,32P1) = 2 (see [8]). Thus, the crossing number of G2P1 is at least two and

the result is true for n = 1. Assume that it is true for n = k, k ≥ 2, and suppose

there is a good drawing of the graph G2Pk+1 with fewer than 3k + 2 crossings.

By Lemma 4, some of the subgraphs Gi, i = 0, 1, ..., k + 1, must be crossed at

least three times. By the removal of all edges of this Gi, we obtain a graph which is

homeomorphic toG2Pk or a graph containing the subgraph G2Pk. Both have fewer

than 3k + 2 crossings. This contradiction with the induction hypothesis completes

the proof. 2

.4 The crossing number of H2Pn

The crossing number of the graph H2P1 is at least two, because it contains the

graph K2,32P1 as a subgraph and cr(K2,32P1) = 2 (see [8]). The reverse inequality

cr(H2P1) ≤ 2 follows from a suitable drawing of the graph H2P1 with two cross-

ings. In Fig. 2(b) there is the drawing of the graph H2Pn with 3n − 1 crossings.

The next result is fundamental in proving that the crossing number of the graph

H2Pn is 3n− 1 for n ≥ 2.
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Lemma 5. If D is a good drawing of the graph H2Pn, n ≥ 2, in which each of the

subgraphs H i, i = 0, 1, 2, ..., n, has at most two crossings on its edges, then in D

there are at least 3n− 1 crossings.

Proof. In a drawing of the graph H2Pn, let us consider the following types of

possible crossings on the edges of Qi
H , i = 1, 2, ..., n− 1:

(1) a crossing of an edge in H i−1 ∪M i
H with an edge in H i+1 ∪M i+1

H ,

(2) a crossing of an edge in M i
H ∪M i+1

H with an edge in H i,

(3) a crossing among the edges of H i.

It is readily seen that every crossing of types (1), (2), and (3) appears in a good

drawing of the graph H2Pn only on the edges of one subgraph Qi
H . Consider now a

good drawing D ofH2Pn assumed in Lemma 5. Similarly, like in Lemma 4, the aim

of this part of the proof is to show that the complete bipartite graphsKi−1

2,3 , K
i
2,3 and

Ki+1

2,3 do not cross each other and none of them separates two other. By Lemma 1,

in the subdrawing D(Qi
H) of the subgraph Qi

H induced by D, i = 1, 2, . . . , n − 1,

Ki−1

2,3 does not separate Ki
2,3 and Ki+1

2,3 , Ki+1

2,3 does not separate Ki
2,3 and Ki−1

2,3 , and

if Ki
2,3 has an internal crossing, Ki

2,3 does not separate Ki−1

2,3 and Ki+1

2,3 . It remains

to prove, that Ki
2,3 does not separate K

i−1

2,3 and Ki+1

2,3 if Ki
2,3 has the planar drawing.

Let Ki
2,3 separate Ki−1

2,3 and Ki+1

2,3 , and Ki
2,3 has the planar drawing. Then a path

ci−1fi−1fifi+1ci+1 crosses the edges of K
i
2,3 at least once. Similarly, like in Lemma 4,

we can show that the graph Ki
2,3 must have at least three crossings on its edges and

this contradicts the assumption that every subgraph H i has at most two crossings

on its edges. It implies that none of the complete bipartite graphs Ki−1

2,3 , K
i
2,3 and

Ki+1

2,3 separates two other and by Lemma 2, they do not cross each other.

So, by Lemma 3, every subdrawing D(Qi
H), i = 1, 2, . . . , n − 1, contains at

least three crossings, every of types (1), (2) or (3). This forces that, in D, there

are at least
∑n−1

i=1
crD(Q

i
H) = 3(n− 1) crossings among the edges of the subgraph

H0 ∪ M1
H ∪ H1 ∪ · · · ∪ Hn−1 ∪ Mn

H ∪ Hn. It remains to prove that, in D, every

of the subgraphs Q1
H and Qn−1

H has at least one crossing which is not counted in
∑n−1

i=1
crD(Q

i
H). To show this, we can use the same consideration as in the proof of

Lemma 4. So, in D there are at least
∑n−1

i=1
crD(Q

i
H) + 2 = 3(n− 1) + 2 = 3n− 1

crossings. This completes the proof.

2

Using Lemma 5, in a similar way as in Theorem 1 we can obtain the next results.

Theorem 2. cr(H2Pn) = 3n− 1 for n ≥ 1.



On the optimal drawings of Cartesian products 27

(a) (b)

Figure 4: The graphs J12Pn and J22Pn.

.5 The crossing number of J12Pn and J22Pn

The crossing number of G2Pn and H2Pn are given in the previous sections. These

results enable us to determine the crossing numbers for Cartesian products of paths

with two other graphs J1 and J2 of order six, see Fig. 1(c),(d).

The graph J1 contains the graph G presented in Fig. 1(a) as a subgraph and

therefore, G2Pn ⊂ J12Pn. It was shown in Section 3 that cr(G2Pn) = 3n − 1.

So, the crossing number of J12Pn is at least 3n− 1. The reverse inequality follows

from the drawing in Fig. 4(a).

Similarly, the graph J2 contains the graphH presented in Fig. 1(b) as a subgraph

and therefore, H2Pn ⊂ J22Pn. As cr(H2Pn) = 3n − 1 (see Theorem 2), the

crossing number of J22Pn is at least 3n − 1. The reverse inequality follows from

the drawing in Fig. 4(b).
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