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1. Introduction

In the adiabatic approach [1] or the Kantorovich method [2], a multidimensional
Schrédinger equation for quantum reflection [3], tunneling of a diatomic molecule
incident upon a potential barrier [4, 5], fission model of collision of heavy ions
[6], tunneling of a composite system thought barriers [7, 8, 9], the photoionization
and decay of a hydrogen atom in magnetic field [10, 11, 12, 13, 14] is reduced
by separating the longitudinal coordinate, labeled as z € (—o0,400), from the
transversal variables to a system of the second-order ordinary differential equations
containing the potential matrix elements and first derivative coupling terms.

The purpose of this paper is to present a description the KANTBP 3.0 program
[15] based on the use of the finite element method of high-order accuracy approxima-
tions [16, 17] for calculating reflection and transmission matrices and wave functions
for such systems of coupled differential equations on finite intervals of the variable
2 € [Zmin, Zmax] With homogeneous boundary conditions of the third-type at the
left- and right-boundary points following from the above scattering problems. The
third-type boundary conditions are formulated for the continuous problems under
consideration by using known asymptotes for a set of linear independent asymptotic
regular and irregular solutions in the open channels and a set of linear independent
regular asymptotic solutions in the closed channels, respectively.

As a benchmark calculations the program is applied to the computation of the
penetration coefficient for 2D-model of the pair charged particles connected by the
harmonic oscillator interaction throughout symmetric or nonsymmetric as well as
the Coulomb-like barriers [8].

As a test desk, the program is applied to the calculation of the reflection and
transmission matrices and corresponding wave functions of the boundary-value
problem for a set of N coupled-channel ordinary second order differential equations
which follows from the above two-dimensional problem.

The paper is organized as follows. In Section 2 we give a brief overview of the
problem. Description of the program KANTBP 3.0 is given in Section 3. Bench-
mark calculations are given in Section 4. Test desk is discussed in Section 5.

2. Statement of the problem

In the Kantorovich approach [2, 16], the multidimensional Schrodinger equation is
reduced to a finite set of N ordinary second-order differential equations on the finite

‘ . : T
interval [Zmin, Zmax] for the partial solution ) (z) = <X(1])(z), ce X%)(z))
, 1 d d
L-2ED)xY(z2) = -T——z""1—
(L 28X () = (I o L V)

d 1 dz471Q(z)

Q) - 2EI> xP(z)=0. (1)
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Here I, V(z) and Q(z) are the unit, symmetric and antisymmetric N x N matrices,
respectively. We assume that d = 1, and V(z) and Q(z) matrices have the following
asymptotic behaviour at large z = 2z, — +o0

e +) (L)

277
Vij(zs) = ( )%Jrz L Qiyla) = ZQZ; , (2)

=1

where €1 < ... < ey are the threshold values, and ¢;; is the Kronecker symbol.
In the present work, scattering problem is solved using the homogeneous third-
type boundary conditions at z = 2y, < 0 and z = 2y > 0:

d®(z)
dz

dP(z)
dz

= R(%min) P (Zmin)

Z=Zmin

= R(Zmax)q)(zmax)y (3)

Z=Zmax

where R(z) is a unknown N x N matrix-function, ®(z) = {X(j)(z)}j.vgl is the
required N X N, matrix-solution and N, is the number of open channels, N, =
maxsp>e, J < IN. From this we obtain the quadratic functional at d = 1 (similar to

Eq. (23) in [16] and Eq. (5) in [17])

E(®, E, Zmins Zmax) = / ®'(2) (L —2FE1) ®(2)dz = TI(®, E, Zumin, Zmax)
_i)T(Zmax)G(zmaX)(I)(zmax) + i)T(Zmin)G(Zmin)@(zmin)a (4)

where II(®, E, Zyin, Zmax) 1S the symmetric functional

Zmax T
(@ Enn) = [ | H VR 9
d®(z) d®(z)T

+@1(2)Q(2) Q(2)®(2) — 2E9'(2)®(2) | dz,

dz dz

and G(z) = R(z) — Q(z) is the N x N matrix-function which should be symmetric
according to the conventual R-matrix theory [18]. Here the symbol { denotes the
transjugate of a matrix.

2.1 The physical scattering asymptotic forms of solutions in longi-
tudinal coordinates and scattering matrix
Matrix-solution ®,(z) = ®(z) describing the incidence of the particle and its

scattering, which has the asymptotic form “incident wave 4+ outgoing waves”
(see Figure 1a), is

{ X (2)T,, z >0, v ——s

X (2) + X (2)R,, 2z <0, o

®,(z — +o0) X(_)(Z) + X(+)(Z)Rv7 z >0, e (6)
XO)(2)T,, £<0, ©
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(a) (b)

Figure 1: Schematic diagrams of the continuous spectrum waves having the asymp-
totic form: (a) “incident wave + outgoing waves”, (b) “incident waves + ingoing
wave”.

where R, and T, are the reflection and transmission N, x N, matrices, v =— and
v =< denote the initial direction of the particle motion along the z axis. Here the
leading term of the asymptotic rectangle-matrix functions X*)(z) has the form [8]

v®

]
pj:\/QE—ej 7=

where Z; = Zf at z > 0 and Z; = Z; at z < 0. The matrix-solution ®,(z, F) is
normalized by

where I,, is the unit N, x N, matrix.
Let us rewrite Eq. (6) in the matrix form at z; — +o00 and z_ — —o0 as

el 3000) (e 0 ) et 0 ) o

where the scattering matrix S is composed of the reflection and transmission ma-

trices
S ( ) |

In addition, it should be noted that functions X*)(z) satisfy relations

(2) = p7 2 exp (iz (pjz - %ln@pﬂz\))) 55 (7)

J

1,...,N, j=1,...,N,,

®! (2, B"®,(2, E)dz = 216 (E' — E)6yu10,

(8)

X(24)
0

X(24)
0

T. R, (10)

Wr(Q(z);X(qE)(z),X(i)(z)) = +2l,,, Wr(Q(z);X(i)(z),X(i)(z)) =0,

(11)

where Wr(e;a(z),b(2)) is a generalized Wronskian with a long derivative defined

~ o) - (

db(z)
dz

da(z)
dz

Wr(e;a(z),b(z)) = a’(z) ( — oa(z)) b(z). (12)
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This Wronskian will be used to estimate a desirable accuracy of the asymptotic
expansions (7) and (17). Here the symbol T denotes the transpose of a matrix.

Let us show that the scattering matriz (10) is symmetric and unitary. Using
Egs. (6) and (11), we have following relations

\ +2TL T, z>0,

Wr(Q(2); @%,(2), ®.(2)) = { +2@(I_> ——i{Jr R.), 2<0
00 — ) ’

—QZTJ{_T(_, z <0,

Wr(Q(2); @L(2), @ (2))

~2(I, —RIR.), z>0,

+2T R, 23>0,
~2RIT., 2<0,

+2RI T, 2>0,

Wr(Q(2); @%,(2), @ (2))

Wr(Q(2); ®1.(), @, () = | TR P70 (13)
— ) )
—0TL, 2 >0,
Wi(Q()i B..(). B (2) ={ op” -
40, z >0,

Wr(Q(2); @(2), 2(2))

—— — = = A A

+2(RT, —R.,), 2<0,

_ T
s o0 { R 123

where the asterisk denotes the conjugate of a matrix. From here, we obtain the
following properties of the reflection and transmission matrices:

T T,+R R, =1,=TI T_ +RI R,
T R.+R.T.=0=RI/ T, +TI R_, (14)
™ =T., RL=R,, R =R_.

This means that the scattering matrix (10) is symmetric and unitary.

Also matrix-solution ®,(z) = ®(z) describing the incidence of the particle and
its scattering, which has the inverse asymptotic form “incident waves + ingoing
wave” (see Figure 1b), is

X (2) + XO ()R, 2> 0,
N L) LX), <0, U7 .
o2 E0) =0 O )T 2> 0 (15)
v - ’ =< .
{ X () + XH()RE, 2 <0, v

=(2) = ® < (2) should be fulfilled from which we obtain
» = T,. Therefore we consider below only matrix-solution

Note, that an equality
R,=R.,R. =R,
D, (2).
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2.2 Calculation of matrices G(zyi,) at v =« and G(zp.x) at v =—
Suppose that a set of linear independent regular solutions ®; (z):{xﬁé%(z)}ﬁv: , for
a problem under consideration is known at z < 0, v =< and at z > 0, v =—, i.e.,

() =X(2), 2<0,v=¢, and ®%F(z) =X (2), 2>0, 0=,
XF)=xF (), i=1,...,N, j=1,...,N,. (16)

In the case of some channels are closed, we use additional linear independent regular
asymptotic functions:

~ . Z
Xi(j )(z) — q; 1/2 exp (+ (qu + = ln(2qj]z\))) 0ijs 2<0, v=¢,
qj

- B 7.
Xi(j*)(z) — 1/2 exp (— (qu 4+ 2 ln(2qj\z]))) 5ij, 2>0, v=—3, (17)
qj

q]:\/GJ—QE, Z’:l’...’N, j:N0+17"'7N'

Then as shown in [17], the G(z) matrix at z = zpm < 0, v =« and at z =
Zmax > 0, v =— can be found via the known set of linear independent regular
solutions @8 (z2):

d®,*(2)

G(2) =R(2) = Q(2) = — — (@7%(2)) " = Q(2) = (R(2) + RT(2))/2. (18)

2.3 Calculation of matrix-solution ®,(z)

After using the high-order accuracy approximations of the finite element method
[16, 17, 19], the solution of a multichannel scattering problem at a fixed value of
energy F in open channels is reduced to a solution of the following algebraic problem

with respect to matrix-solution ®" = ((x™M)", ..., (xM))")
Gp(ﬁh = (Ap — 2B Bp)q)h = (Mzrjnax - Mﬁlin) q)h7 (19)
d®"
dz(Z) = (G(2) + Q(2))®"(2), 2= Zmin, 2= Zmaxs (20)

where AP and BP? are the symmetric (L N) x (L N) matrices, L is the number of
the nodes of the finite element grid on interval [zmin, Zmax], ME,.. and M?. —are
matrices with zero elements except the right-lower and left-upper N x N matrices
equal to0 G(2zmax) and G(zmi ), respectively.

First, we consider the numerical algorithm for the calculation of matrix-solution

®" = ®” . In this case Eq. (19) can be rewritten in the following form

7 G G 7 0 0 d?
on(3)=(5 ) (3)-(3 o) ()
( & gk g )\ & 0 Glomw) )\ @l )
where ®? and ®° = ®_ (z44) are the matrix-solutions of dimension (LN — N) x
N, and N x N,, respectively. From here, we obtain explicit expressions

P! = —(GI)'GLPY,  G(zmax) = G¥ — G*(G)T'G. (22)

—
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From Egs. (20) and (22) we can obtain the relation between ®° and its derivative

AP b
dz - R(Zmax)(§<_7 R(Zmax) = G(Zmax) + Q(Zmax)- (23)

Note, that matrix G(zmax) is determined via the inverse of submatrix G%* cal-
culation of which requires substantial computer resources. For evaluating Eq. (23)
without such calculation of the inverse of submatrix G¢¢, let’s consider the following
auxiliary system of algebraic equations

G Gaj)(m) (0)
- — , 24
(G{’_ G Fo I (24)

As the determinant of the matrix G? + M? . is nonzero, the above equation has a
unique solution

FL = —(GE)'GIFL, FL = (GY - GR(Ge)7GY) . (25)

— —

Taking this into account, the required R(zmax) matrix is equal to

R(zmax) = (F2) ™ + Q(2max)- (26)

Using Eqs. (23) and (6), we obtain the following matrix equation for the reflection
R matrix:

dX®)(2)

YS—) (ZmaX)R<— = _Y(_) (ZmaX)7 YE:) (2) - dz

—

— R(2)XH(2). (27)
Then the required solution ®” is calculated by formulae (6), (22) and (25)
B = X (zpae) + X (zpae) R, ¢ =F2 (F2) 7 @2 (28)
The transmission T, matrix is determined from the matrix equation
X (zmin) Te = " (i)

Note that, when some channels are closed, the Y{*)(z) and X(7)(2) are rectangular
N x N, matrices. Therefore, using the pseudoinverse matrices of Y*)(z) and
X (%), we obtain the following formulae:

Re =~ (Y)Y (o)) (YO ()" Y (o). (29)

T, = ((X<—>(zmm))T X(_)(zmin)> (X(_)(zmm))T D" (Zmin)-

Now we will describe briefly a calculational scheme for matrix-solution ®"=&". .
The required R(zmin) matrix is equal to

R(zmin) = (F%) ™" + Q(Zmin), (30)
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and required solution ®”, is calculated as

® =F° (F2) '@, &% =X (znm) + X (zmin) R, (31)

—

Here ®°, = ®_,(2,,n) and @i are the matrix-solutions of dimension N x N, and
(LN—N)xN,. F%, and F°, are the matrices of dimension N x N and (LN —N)x N
which are the solutions of the auxiliary system of algebraic equations

Fe, G* G® Fe, I
(Gp—MglaX)(Fb )E (Gba be)(Fb )Z—(())' (32)

Finally, we obtain the following matrix equations for the reflection R_, and trans-
mission T'_, matrices:

dX®)(2)

YO )Ry = YD), YE() = =

—

X(Jr) (Zmax>T% = @i (Zmax> .

~ R(2)XH(2), (33)

The reflection R_, and transmission T _, matrices are evaluated using the pseudoin-
verse matrices of Y5 (zmin) and X (zpay):

R, =- ((YS><zmm>)TY:><zmm>) (YO (zin) " Y (i), (34)
T—> = ((X(+)(2max))T X(+)(Zmax)> h (X(+)(2max))T q)i('zmax)'

2.4 Asymptotic forms of regular and irregular solutions in the lon-
gitudinal coordinates

We calculate the asymptotic solution to a set of N coupled ordinary differential
equations (ODE) at large values of independent variable |z| > 1

1 d d
(_WE g V) ‘QE) i) >
N d 1 d
=3 (Vij(Z) +Qij(2) 7 + Fazd_l@j(z)) Xjir (2)-
J=Lj

Here d > 1 is the dimension of configuration space of a general scattering problem
[17]. For the considered case, we put d = 1 and calculate asymptotic solution on
two intervals —00 < 2z < zpin and zpax < 2 < +00. We assume that coefficients of
Egs. (35) can be represented in the general asymptotic form as

kmmx“l‘l (l) kmax+1 Q(l)
wz):(j ) L Qul= ), . (36)

=1

Note that in general case coefficients e( ), V;j and Q are different for z > 0

and z < 0. Below we will consider only case of z > 0.
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Step 1. We construct the solution of Egs. (35) in the form:

X3¢(2) = 63 (R (2) + e () 1), (37)

where ¢;;(2) and 1,/ (2) are unknown functions, R;(2) is a known function. We
choose Ry(z) as solutions of the auxiliary problem treated like etalon equation

(Zz(/k<1) — ZZ‘(Ik>k1lnaX) — 0)

Kinax (k)
1 d 4,d Z, ) -
Zd 1 dZZ dZ + ; 7 — Dy RZ/(Z) =0. (38)

Remark 1. If ZZ.(/kZP’) = 0 then solutions to the last equation are presented via
the hypergeometric functions, exponential, trigonometric, Bessel, Coulomb func-
tions, etc. For example, if the leading terms of the asymptotic solutions are given
by formula

Ri/(Z) =

1 7y
——exp | =2 (pi/z — 2pi |2 )) , 39
— ( ZANEE) (30)

the coefficients of potential in the etalon equation (38) have the form:

— -1 Zy 72
Z0 —oz, 2@ WZIEZD, 2 a
4 Di by

(40)

Step 2. At this step we compute the coefficients ¢;;(z) and ¢;(z) of the
expansion (37) in the form of series over inverse powers of z:

kmax ¢(k//) k‘max /lﬁ(k/l)
k'=0 k’'=0

After substitution of Eq. (37), (41) into (35) with the use of Eq. (38) and equating
the coefficients at z=* R (z) and 5K ARy (2)

—= we arrive to a set of recurrent relations
/ .
at k' < kpax:

(7 =28+ p2) 0l + (e = Z0) 0l — 22 = 1wl = — £, (42)
(el@ —2E +p§,> V8 2k — el Y + <e§1) - ZS”) P = gl

X i’
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where the right hand sides f.(.k " and gg{f,) are defined by relations

18 =~ = 2 ¢52+2xwk z{) ol "

+Z( o 2R Y (Z 2 2 pll =

j=1j#i k"=1

22 QW0 + QB (=2 + o+ d+ 1)l D V) (3)
0% = —(K — 1)K — 3+ d)plt ™ + Z (Vi = Z) it

+ Z Z(QQU W - QK + d =3 - Kyl VPl )
J=1,j#1 k=1
with initial conditions p? = 2F — e(,o), ¢Z(ZO) = O, wz(zo) =0, at i = 1, span over the
open channels i, = 1,..., N, and py = g, g» > 0, ¢5 = e( —2F at i’ = i. span
over the closed Channels ic = No+1,..., N that followed from (7) and (17). Also
from Eq. (42) at &' =1 and i =7/,

(€0 =2 o) =0, (= 2") ulf) =0, (44)

we obtain condition Zi(,) = e(,l ),

Step 3. Here we perform calculation of the coefficients qﬁgf,/) and 1/)1(5,) by a step—
by-step procedure of solving Eqs. (42) for 2F # e(./o), 1#d and K =1,..., kpac:

o) = [ — ] [0 = (= 20) o 4 2mhir - ).
zﬁ”:H”—ﬁﬂl[ﬁ’ 2k = 1ol = (e = ) uli V] )
and for 2F # eg,o), i=14and K =2,... kpac
ou = =20 = 1)) ity (46)
kD [ (K — 1) <2E — e@ﬂ £

Algorithm described above has been implemented in the MAPLE and FOR-

TRAN (see description of SLAS program in section 3.2). Resulting output pro-

vided evaluation of the y;(z) and X“ ( )

the results from [20].

Remark 2. The choice of appropriate values zy;, and zn.. for the constructed
expansions of the linearly independent solutions for p;,, > 0 is controlled by the
fulfillment of the Wronskian condition (11), (12)

Wr(Q(z2); x"(2), x(2)) = £2:d,, (47)

up to the prescribed precision ey,

. This algorithm has been examined with
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Figure 2: Flow diagram of the new version of the KANTBP 3.0 program.
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3. Description of the program

Figure 2 presents a flow diagram for the program. The KANTBP 3.0 program
is called from the main routine (supplied by a user) which sets dimensions of the
arrays and is responsible for the input data. The KANTBP 3.0 program needs
no installation. The description of all subroutines can be found in comments in
the program source code. Also users can find instructions on how to compile the
KANTBP 3.0 in the README file.

The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,ISC,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,

1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
THRSHL , IBOUND, FNOUT, I0UT, POTEN, IOUP,FMATR, I0UM,
3 EVWFN, IOUF,TOT,ITOT,ZTOT,MTOT,MITOT,MZTOT)

In the present code each array declarator is written in terms of the symbolic
names of constants. These constants are defined in the following PARAMETER
statement in the main routine:

PARAMETER (MTOT=10000,MITOT=30000,
MZTOT=90000,NMESH=7MDIM=4)

Here

e MTOT is the dimension of the working DOUBLE PRECISION array TOT,
The last address ILAST of array TOT is calculated and then compared with
the given value of MTOT. If ILAST > MTOT the message about an error is
printed and the execution of the program is aborted. In the last case, in order
to carry out the required calculation it is necessary to increase the dimension
MTOT of array TOT to the quantity ILAST taken from the message.

e MITOT is the dimension of the working INTEGER array I'TOT. The last
address ILAST of array ITOT is calculated and then compared with the
given value of MITOT. If ILAST > MITOT the message about an error is
printed and the execution of the program is aborted. In the last case, in order
to carry out the required calculation it is necessary to increase the dimension
MITOT of array ITOT to the quantity ILAST taken from the message.

e MZTOT is the dimension of the DOUBLE COMPLEX working array ZTOT,
The last address ILAST of array ZTO'T is calculated and then compared with
the given value of MZTOT. If ILAST > MZTOT the message about an error
is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the
dimension MZTOT of array ZTOT to the quantity ILAST taken from the
message.

e NMESH is the dimension of the DOUBLE PRECISION array RMESH con-
taining the information about the subdivision of the longitudinal interval
[Zmin, Zmax] on subintervals and number of elements on each one of them.
NMESH is always odd and > 3.
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e MDIM is the dimension of the DOUBLE PRECISION array THRSHL and
INTEGER array NDIL containing information about a set of threshold values
and numbers of coupled differential equations, respectively.

In order to change the dimensions of the code, all one has to do is to modify the
single PARAMETER statement defined above in the main program unit.

We have added a new flag ISC for performing the calculation of the reflection
and transmission matrices:

e — 1 — calculation of the reflection and transmission matrices is carried out
only with direction v =<;
= 2 — calculation of the reflection and transmission matrices is carried out
only with direction v =—;
= 3 — calculation of the reflection and transmission matrices is carried out
with both directions v =< and v =—. Also the properties (2.4) of the
reflection and transmission matrices are verified.

The meaning of the all arguments except above are presented in [16].
New output data

The results of the calculation of the reflection and transmission matrices and
corresponding wave functions are written using unformatted segmented records into
file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NOPEN,NGRID, ((RR(I,J),I=1,NOPEN),J=1,NOPEN),
((TT(1,J),I=1,NOPEN),J=1,NOPEN),
(XGRID(I),I=1,NGRID), ((R(I,J),I=1,NN),J=1,NOPEN)

In the above, parameters presented in the WRITE statement have the following
meaning:

e NDIM is the number of coupled equations,

e NGRID is the number of finite-element grid points,

e NN = NGRID x NDIM,

e NOPEN is the number of open channels,

e Arrays RR and TT contain the reflection and transmission matrices values
calculated,

e Array XGRID contains the values of the finite-element grid points,

e Array R contains NOPEN eigenfunctions each per NN elements in length
stored (see the scheme in [16]).

New user-supplied subroutines
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e ASYMSL is the name of the new user-supplied subroutine for the scatter-
ing problem, ®_(z), which calculates the regular X(7)(z), irregular X(*)(z)
asymptotic rectangle-solutions and their derivatives at z = 2.y, and regular
X(_)(z) asymptotic square-solution and its derivative at z = zy;,. It should
be written as follows:

SUBROUTINE ASYMSL(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT, THRSHL,
1 PREGL ,DREGL,PREGR,PIRRR,DREGR,DIRRR,I0UT)

PROGRAM
TO CALCULATE THE REGULAR, IRREGULAR
ASYMPTOTIC MATRIX SOLUTIONS PREGR, PIRRR
AND THEIR DERIVATIVES DREGR, DIRRR AT ZMAX,
THE REGULAR MATRIX SOLOTION PREGL AND ITS
DERIVATIVE DREGL AT ZMIN

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION QR(NOPEN),THRSHL(NDIM)

COMPLEX*16 PREGL(NDIM,NDIM) ,DREGL(NDIM,NDIM),
PREGR (NDIM, NOPEN) ,PIRRR (NDIM,NOPEN),
DREGR (NDIM,NOPEN) ,DIRRR (NDIM, NOPEN)

RETURN

END

e ASYMSR is the name of the new user-supplied subroutine for the scatter-
ing problem, ®_,(z), which calculates the regular X(*)(2), irregular X(7)(z2)
asymptotic rectangle-solutions and their derivatives at z = 2z, and regular
X(+)(z) asymptotic square-solution and its derivative at z = z.«. It should
be written as follows:

SUBROUTINE ASYMSR(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT,THRSHL,
1 PREGR,DREGR,PREGL ,PIRRL,DREGL,DIRRL,I0UT)

PROGRAM
TO CALCULATE THE REGULAR, IRREGULAR
ASYMPTOTIC MATRIX SOLUTIONS PREGL, PIRRL
AND THEIR DERIVATIVES DREGL, DIRRL AT ZMIN,
THE REGULAR MATRIX SOLOTION PREGR AND ITS
DERIVATIVE DREGR AT ZMAX
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IMPLICIT REAL*8 (A-H,0-2)

DIMENSION QR(NOPEN),THRSHL(NDIM)

COMPLEX*16 PREGR(NDIM,NDIM) ,DREGR(NDIM,NDIM),
PREGL (NDIM, NOPEN) ,PIRRL (NDIM,NOPEN),
DREGL (NDIM,NOPEN) ,DIRRL (NDIM,NOPEN)

RETURN

END

Here arrays QR and THRSHL contain a set of momentum and threshold values,
respectively; SHIFT contains the given double energy spectrum value; NDIM is the
number of coupled equations; NOPEN is the number of open channels; IOUT is
number of the output logical device for printing out the results of the calculation.
To set the third-type boundary conditions at both points zypm, < 0 and zpax > 0,
flags IBOUND and IDIM always should be 8§ and 1. Here IBOUND is parameter
defining the type of boundary conditions, and IDIM is dimension of the envelope
space [16].

3.1 Description of new subprogram units

The function of each new subroutine is briefly described below. Additional details
may be found in COMMENT cards within the program.

Subroutine ADDVEK assembles the element into the corresponding global
complex vector using a compact storage form. This is modified version of
subroutine ADDVEC [16] for complex arithmetics.

Subroutine ASSMBC controls the calculation of element complex stiffness
matrix and assembles them into the corresponding global complex matrix.
This is modified version of subroutine ASSMBL [16] for complex arithmetics.

Subroutine CHECRT controls the properties (2.4) of calculated reflection R,
R_, and transmission T, , T_, matrices.

Subroutine CHECKN prints error messages when input data are incorrect
and stops the execution of program KANTBP.

Subroutine DECOMC calculates LD LT factorization of matrix. This fac-
torization is used in subroutine REDBAC to reduce and back-substitute the

iteration vectors. They are modified versions of subroutines DECOMP and
REDBAK [19] for complex arithmetics.

Subroutine GAUSSC calculates linear equation solution by the Gauss-Jordan
matrix inversion method. This is a modified version of subroutine GAUSSJ
[21] for complex arithmetics.
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e Subroutine HQPOTN calculates potential matrix elements of coupling in the
Gaussian nodes of the finite-element mesh. This is a modified version of sub-

routine HQPOT [16] which calculates potential matrix elements of coupling
in the z = zZpin.

e Subroutine SCSOLC calculates the reflection and transmission matrices and

corresponding wave functions, and writes them into file EVWFN. if necessary.

Note, that the function of the other subroutines has been described in [16, 17].

3.2 Description of the auxiliary SLAS program

The calling sequence for the subroutine SLAS is:

CALL SLAS(XS,SHIFT,THRSHL,IDIM,NDIM,NOPEN,NMAX,KMAX,
MAXZ,ZPREGR, ZDREGR,FXSAS,ZASO)

1

where arguments have the following type and meaning;:

Input data

XS
SHIFT
THRSHL

IDIM
NDIM
NOPEN
NMAX
KMAX

MAXZ
ZPREGR

ZDREGR

REAL*8
REAL*8
REAL*8

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER

COMPLEX*16

COMPLEX*16

value of zyin Or Zmax.

the given double energy spectrum.

array THRSHL of dimension NDIM containing
values of the thresholds ego).

dimension of the envelope space.

number of coupled differential equations.
number of open channels.

number of required linear independent solutions
and always NMAX < NDIM.

maximal order of asymptotic expansions of ma-
trix elements V(z) and Q(z) at large |z|.

value of k/ . in etalon equation (38).

array ZPREGR of dimension NDIM x NMAX.
In input ZPREGR(I,I) contains value of reg-
ular/irregular solution of I-th etalon equation
(38), while on output ZPREGR contains
asymptotic regular/irregular matrix-solution of
Eq. (35).

array ZDREGR of dimension NDIM x NMAX.
On input ZDREGR(I,I) contains first deriva-
tive of regular/irregular solution of I-th etalon
equation (38), while on output ZDREGR
contains first derivative of asymptotic regu-
lar /irregular matrix-solution of Eq. (35).
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FXSAS LOGICAL*8 if FXSAS = .TRUE. then calculates only recom-
mended value of boundary points. In othercase
calculates ZPREGR and ZDREGR.

e ZASO is the name of the external user-supplied subroutine for evaluating

coefficients Zi(k) of the etalon equation (38), and should be written as follows:

SUBROUTINE ZASO(ZAS,MAXZ,SHIFT,THRSHL,NDIM,NOPEN, ABSB)

C .
C .
C . PROGRAM
C . TO CALCULATE THE COEFFICIENTS OF ETALON
C . EQUATION
Cc .
C . e e e e e e e e e
IMPLICIT REAL*8 (A-H,0-Z)
COMPLEX*16 ZAS(NDIM,MAXZ)
RETURN
END
e VQASO is the name of the new user-supplied subroutine for the evaluate the
coefficients Vig-l) (2 <1 < kpax) and QE? (1 <1 < kpax) of the asymptotic
expansion (36) of matrix element V(z) and Q(z) at large |z|, and should be
written as follows:
SUBROUTINE VQASO(VAS,QAS,KMAX,NDIM,ABSB)
Cc .
Cc .
Cc . PROGRAM
C . TO CALCULATE THE COEFFICIENTS OF THE ASYMPTOTIC
C . MATRIX ELEMENTS V(z) and Q(z) WITH ORDER KMAX
C . AT LARGE |z
C .
C .

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION VAS(NDIM,NDIM,2:KMAX),QAS(NDIM,NDIM,KMAX)
RETURN

END

Here as followed from (44), on output ZAS(I,1) should be equal 6(11), and on
input the parameter ABSB = sign(XS).

Subroutine SLAS in program KANTBP, is called as needed via subroutines
ASYMSL and ASYMSR.
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4. Benchmark calculation of penetration coefficient

Wave function ¥(Z,7) of two particles (or ions) labeled by i = 1,2 connected with
oscillator potential penetration through repulsive (Coulomb) barriers U(Z;) in the
center-mass-system satisfies the two-dimensional Schrodinger equation [8]:

h2 82 h2 62 - ~ ~ ~
(——— — 5o + 5@ + Uh(@) + Ua(#) - E) W(z,5) =0,  (48)

where @ is the oscillator frequency, E is the energy, &1 = § + s1&, &o = § — s34 are
variables in the laboratory system of coordinates. The parameters s; = 72, s3 = 71
are defined via masses of particles m; and msy, and their total M = m; + my and

reduced p = ™2 masses.

M
Using the transformation of variables

M
T = x;slc'%a Y= _x;slcga (49)
\/ 1

with the oscillator units of length x,s. = u%’ the corresponding Eq. (48) leads to

the following dimensionless equation

0? 0?
(_8—y2 “ o2 T v+ V(x,y) - 5) V(z,y) =0, (50)

where £ = 2F = Lc and V' (z,y) are the dimensionless energy and barrier potential

EOS ~
in units of energy E,,. = %W

1 ~ ~
V(x,y) = Ui(x1) + Us(72) = z <U1 (1) + Uy ($2)) : (51)
where 11 = s9y + s1x and x9 = Soy — s3x With s = ﬁ

Model A. We choose barrier potentials U;(x;) with effective charges ZZ > 0 in
the form of the repulsive truncated Coulomb potential cut off on small 0 < Z,;;, < 1
and large Zp.x > 1 distances from z; = 0 as [7]

;miiin o 53213%’ ‘xl, S 'i‘ming
Ui(x;) = % — ;mZ;x, Tpin < |%i] < Tmax, (52)
0’ ‘xl, > Tmax-

Model B. We define the Coulomb-like potentials U;(x;) that depend on the in-
teger parameter s > 2 and truncation parameter T, > 0 [8]:

27,

AVAEZ] i A
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The asymptotic boundary conditions for the solution ¥(y,z) = {¥;, (y,z)} 2,
with direction v =— can be written in the obvious form
0, CXP (l (pz-oy — sign(y) 72 ln(2pz-o|y|)))
U, (y —» —o0,x) = B; () :
’ VPio
No exp (—2 (pjy — sign(y) 72 1n(2pj\y\)>>
+2_ B @) - Rji,.
j=1 VP
No exp (2 (pjy — sign(y) 22 1n(2pj!y!)>>
U, (y = 400, x) — Z B](-O) (x) b Ty, (54)

i=1 vPi

U, (y,x — +to00) = 0.

Here N, is the number of open channels at fixed energy 2E = p? —1—553) >0; Z12=0
for model A and Zyy = (Zy + Z5)/sy for model B; R;;, and Tj;, are unknown

reflection and transmission amplitudes; B](-O)

corresponding to energy 5§-0) =27—latj>1

(x) are the basis functions of oscillator

0 0 »0) 00/ »(0)
(—@ + 2% — £; ) B; (x) =0, / B, (x)Bj (x)dx = 0;;. (55)

4.1 Kantorovich expansion
We construct a desired solution of the boundary-value problem (BVP) (50), (54)

in the form of Kantorovich expansion:

N

Wi (w,y) = > Bjilw;y)xe(y)- (56)

Jj=1

The basis functions B;(z;y) in the fast variable x and the potential curves ¢;(y)
that depend continuously on slow variable y as a parameter are chosen as solutions
of the BVPs for the equation on grid Q,{@min(¥), Tmax(v)}

(=i e+ Vi) =500 ) Bilain) =0, (57)

which are subject to the boundary, normalization and orthogonality conditions

Bj(2min(y);¥) = Bj(¥max(y);y) = 0,

Tmax (Y)
Bi(z;y)Bj(x; y)dx = 0. (58)

Tmin(y)
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By substituting (56) into (50), (54) and by taking average over (58), we obtain
the BVP for a set of N coupled ODEs that describes the slow subsystem for the

‘ . T
partial solutions x)(y) = <x§”)(y), cee ngjr) (y)) :

d2

Here I is the unit N x N matrix, V(y) and Q(y) are the effective potential N x N
matrices:

(-1 + Vi + Qs + B2 ) x0) 0. (59)

Tmax (y)
OB;(x;y) 0B;(w;y)
L B T (60)
xnﬁn(y)
ﬂfmax(y) aB( )
I\ Y
Qij(y>:_ / Bi(xSQ)]ade'
xmin(y)

The eigenvalue problem (57), (58) was solved by the ODPEVP program [22] for
Y € [Ymin, Ymax] good separated eigenvalues |&;(y) — €;-1(y)| > € > 0 where € ~ 0.05
for the double precision arithmetic. This condition is valid for accepted values of
parameters of considered models. In the case of non-good separated eigenvalues,
ie. if 0 < |e;(y«) — €i—1(y«)| < €, one should generate a more dense grid in vicinity

= |y—vy.| < €. of avoided crossing points y, and/or use multi-precision arithmetic.
For long-range potentials one should construct appropriate asymptotic expansion
for eigenvalues and corresponding eigenfunctions y € (—00, +00)\[Ymin, Ymax] 1O
build up asymptotic effective potentials with leading terms

97 Emax V(k,ﬂ:)
0 . 12 i 3 B
V;j(y) = (65 + 81gn(y) y ) 5ij + E Jk (y kmax 1)7

=3 Y
kmax Q(kvi)
Qily) = y]k (y~Fme==t), (61)
k=3
where the sign “4” is for y > 0 and “—" is for y < 0.

For given number N of Eq. (59), the values 2, and xp.x of grid Qu{Zmin, Tmax }
were chosen in the region |z| > 2o = /2N — 1, where the Hermite polynomial
[24] (or basis function Bj(z;y) in a general case) has no zeros. These values are
computed with prescribed precision eps > 0 from the condition

exp (—/ dry/ 2% — xQ) < eps, (62)
o 0

which in the given case leads to inequality

2

z3/2
exp (—x x? — x%/Q) (:I: + /2% — x%) g% < eps. (63)
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To find an approximate solution, at the first step we choose initial approximation
Tmax = To, after which it is increased with step 1 until condition (63) is satisfied.
Values Ymin < Tmin and Ymax > Tmax Were chosen from the condition that potential
(53) is negligible on the interval Ty, < T < Tmax-

The matching points y7*4" and y3 of the numerical (60) and asymptotic
(61) effective potential were calculated as follows:

match

Y = min (yf?, yY ) , Y5 " = max (?Jf : yK) : (64)
k‘nl'}x :l:) (kma)ui)
max max V
eps eps
since |Q (e, B < \Qg\l}}“\‘f"’l l, |V km‘"""i)| < \V]E,]R,“‘"""i”. The values Ymin and Ymax

were satlsﬁed by inequalities ymin < ¥"¥" < T and Ymax > YN > 200, that
should be calculated from conditions

% |¢(l€max _)| . |¢ k‘nnx, ‘
Ymin = min y{natCh mln _ Pmax [ 1V g1, ,min _kmax [ [Yhi, ’
Jto eps o eps
(kmaX7+ kmax,‘i’
kma ¢ b w
ymax = max yg%atch maX IIIEW ’max 1111F ' (65)
Js%o eps Frio eps

For the calculation of asymptotic solutlons of model B, we have used etalon
equation (38) at d = 1, k], = 1 and Z( = 2sign(y)Zi12, which corresponds to

max

known solutions in the open channels

=+ - *1/2 (GO(pi07 ‘HJ) :t ZFO(pioa ‘HJ)) eXp(:!:Z(S’io)/Q? ?J > 07
B, pi,y) =i, { (Golper—y) F 1Fo(prn —y)) exp(tid, ) /2, y <0, (00

and in the closed channels

Ri(gi,y) = ;. Ptexp(—t/2) U(L + Zis/qi, 2,1), ¢ =2q:]yl. (67

Here Fy(pi,,y) and Go(p;,,y) are the regular and irregular continuum zero order
Coulomb functions calculated by subroutine RCWFNN [20] which is a modified
version of the subroutine RCWFEN [23] for the DOUBLE PRECISION accuracy,
o;, = argl' (14 1Z12/p;,) is the Coulomb phase shift [24], and U(a,b,c) is the
confluent hypergeometric function of second kind calculated by subroutine CHGU
[25]. Note that, for the numerical calculation we have neglected the exponentially
small factor exp(—t/2) in R; (qi.,y) and its first derivative, since this factor is
canceled durmg evaluation of R(y) matriz in Eq. (18). The coefficients V(k’i)

Ykt ¢§]: and wﬂ have been implemented in MAPLE and FORTRAN up to

ij
order Ky = 11 using an algorithm described in [8] and Section 2.4.
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Figure 3: The total probabilities T =
through truncated Coulomb (52) (upper panel) and Coulomb-like (53) (lower panel)
potential barriers.

|T|?, of penetration vs energy & = 2F

Below we have used values of parameters: m; = mo = 1, Ty = 0.1, Zl =
Zy =05 and Z; = Zy = 1. Also Zpax = b for model A, and s = 8 for model
B. In the considered examples we used grids Q,{Zmin, Tmax} = {—10(768)10} and
Qy{Ymin, Ymax} = {—125(200) — 25(100) — 6(200)6(100)25(200)125} with the La-
grange elements of the order p = 4 between the nodes. In the above, the number
of grid elements for grids €2, and €2, is shown in the parentheses. At the boundary
points Ymin and ymax the absolute accuracy ey, of calculated Wronskian (12) was
less then 10711,

The total probabilities T = |T|?, = Z;V:ol |T3;]? of penetration through trun-
cated Coulomb (52) and Coulomb-like (53) potential barriers of models A and B
are shown in Figure 3. These pictures illustrate the important peculiarity that a
more realistic nontruncated Coulomb-like barrier, being more wide than truncated
one, leads to a set of the probability maximums having a bigger half-width. It can
be used for verification of the models of type A and B and quantum transparency
effect. Positions of peaks of transmission coefficient demonstrated the quantum
transparency effect correspond to the real part of energies of metastable states
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Figure 4: The profiles of the absolute values of the wave function |V, (z, z)| of the
model B at m; = mo = 1, Tpin = 0.1, s = 8 and Z; = Zy = 0.5. Left panel: the
resonance transmission at 2F = 8.1403 and |T|?, = 0.9259. Right panel: the total
reflection at 2F = 9.4748 and | T|3; = 0.0161.

imbedded in continuum while the half width corresponds to imaginary part. The
profiles of wave functions corresponding to the resonance transmission and total
reflection are shown in Figure 4. One can see that in resonance transmission case
the probability density have a maximum in a vicinity of barrier due to metastable
states imbedded into continuum while in the case of total reflection in a vicinity of
barrier it is suppressed.

5. Test desk

We consider the BVP (50) with parameters m; = 1, mg = 3, ZTyin = 0.1, 21 = Z5 =
0.1, s = 8 and N = 4. The corresponding BVP (1)—(3) and the matrix elements
V(z), Q(z) have been solved on grid €,{Zmin, Tmax} = {—Zmin(64)Tmax } With ac-
curacy 1071°. Boundary points Zmax = —Tmin & 8.8 were defined by the inequality
(63). All calculation details of this problem were written into file ODPEVP.LPR.

The following values of numerical parameters and characters have been used in
the test run via the supplied input file SQRTBT.INP:

&PARAS TITLE=’ REFLECTION AND TRANSMISSION MATRICES °,
IPTYPE=1,ISC=3,IDIM=1,NPOL=4,
SHIFT= 4D0,IPRINT=1,IPRSTP=120,
RMESH=-25D0, 100D0, -6D0, 100D0, 6D0, 100D0, 25D0,
NDIR=1, NDIL=4, NMDIL=1,THRSHL= 1.DO,3DO0,5D0,7DO0,IBOUND=8,
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FNOUT="KANTBP.LPR’ ,I0UT=7,POTEN="0DPEVP.PTN’,I0UP=10,
FMATR="KANTBP.MAT’ ,I0UM=11,EVWFN="KANTBP.WFN’ , IOUF=0
&END

TEST RUN OUTPUT

PROBLEM: REFLECTION AND TRANSMISSION MATRICES
*kkokkokok ok

CONTROL INFORMATION

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 4
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 300
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 1201
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 1
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 4.00000
SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF

GROUP ELEMENTS INTERVAL  ELEMENT STEP INTERVAL

100 -25.000  0.19000  0.04750 -6.000
2 100 -6.000  0.12000  0.03000 6.000
3 100 6.000 0.19000  0.04750 25.000
NDIM, MDIM= 4 4
TOTAL SYSTEM DATA

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 4804
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 60010
MAXIMUM HALF BANDWIDTH . . . . . . . . . . MK ) = 20
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 12
CALCULATION OF WAVE FUNCTION WITH DIRECTION <--
NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,Qr ) = 1 0.1732E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,Qr ) = 2 0.1000E+01

IM PART OF WRONSKIAN

-2.00000 -.179667E-08
-.179667E-08 -2.00000

RE PART OF RR MATRIX

.194759 -.591176E-03
-.591176E-03 -.485403E-01

IM PART OF RR MATRIX

-.124681 0.172716
0.172716 0.931470
RE PART OF TT MATRIX
0.600459 -.317926E-01
0.317926E-01 -.276469

IM PART OF TT MATRIX
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-.729781 0.150167
-.150167 0.134574E-01
Z RE PART OF FUNCTIONS

-25.0000 0.6664D+00 -.1165D+00 0.1531D+00 -.1120D+00 0.7601D-06 0.8680D-05 0.2445D-07 0.4751D-06

-19.3000 -.7209D+00 0.1045D+00 0.1325D+00 0.8070D-01 -.5930D-05 0.2169D-04 -.4531D-06 0.1458D-05

-13.6000 0.6802D+00 -.7978D-01 0.4223D-01 0.2431D+00 -.2701D-04 0.3867D-04 -.2948D-05 0.3128D-05
-7.9000 -.5802D+00 0.5077D-01 -.8674D-01 0.2719D+00 -.4534D-03 0.2169D-03 -.6446D-04 -.1879D-04
-3.6000 0.1490D-01 -.5461D-01 -.3718D-01 -.2780D+00 -.9231D-02 0.2399D-02 -.1300D-02 -.2460D-03
0.0000 -.8416D+00 0.7861D-01 0.9335D-02 0.4446D+00 0.5112D-01 -.1732D-01 -.2248D-02 -.6851D-02
3.6000 -.4115D+00 -.6691D-01 0.8351D-01 0.1351D+01 -.4633D-02 0.2046D-01 -.2638D-04 -.7678D-04
7.9000 -.6232D+00 0.3071D-01 0.6435D-01 -.5763D+00 -.3348D-03 -.1124D-02 0.5789D-04 0.3906D-03
13.6000 0.5769D+00 -.6829D-01 -.8088D-01 -.1298D+01 -.3777D-04 -.5932D-04 0.3999D-05 0.9632D-05
19.3000 -.4592D+00 0.1030D+00 -.1646D+00 -.1211D+01 -.1728D-05 0.5374D-04 0.2039D-06 -.3182D-05
25.0000 0.2716D+00 -.1259D+00 -.1631D+00 -.5370D+00 0.1506D-05 0.4406D-04 -.6915D-07 -.2284D-05

Z IM PART OF FUNCTIONS

-25.0000 0.2735D+00 0.1055D-01 -.2391D-01 -.2560D+00 0.6563D-05 -.4645D-05 0.3403D-06 -.2162D-06

-19.3000 -.7902D-02 -.5291D-01 0.8108D-01 -.2684D+00 0.7047D-05 0.5197D-05 0.4906D-06 0.4708D-06

-13.6000 -.2428D+00 0.8603D-01 0.1506D+00 -.1425D+00 0.2784D-04 0.5248D-04 0.2187D-05 0.5597D-05
-7.9000 0.4353D+00 -.1061D+00 0.1328D+00 0.8857D-01 -.1206D-03 0.5087D-03 -.4282D-04 0.9200D-04
-3.6000 0.7372D+00 -.1083D+00 -.1518D+00 0.1221D+00 0.1107D-02 -.5540D-02 -.1591D-02 -.3790D-03
0.0000 0.5262D+00 -.1487D+00 -.1846D-01 0.6235D+00 -.3506D-01 -.4285D-03 -.5965D-02 -.9390D-02
3.6000 -.5284D+00 -.8130D-01 0.1780D+00 0.1380D+01 0.1289D-01 0.1935D-01 -.2316D-02 0.6339D-04
7.9000 0.3095D+00 -.1298D+00 -.1677D+00 -.5138D+00 0.3710D-03 -.1388D-02 -.1535D-04 0.4310D-03
13.6000 -.5507D+00 0.1129D+00 -.1559D+00 -.1335D+01 0.6059D-05 -.8405D-04 -.3894D-06 0.1222D-04
19.3000 0.7698D+00 -.8224D-01 -.5905D-01 -.1316D+01 0.1620D-04 0.4979D-04 -.1052D-05 -.2867D-05
25.0000 -.8982D+00 0.3837D-01 0.6149D-01 -.6546D+00 0.5103D-05 0.4498D-04 -.2851D-06 -.2320D-05

CALCULATION OF WAVE FUNCTION WITH DIRECTION -->

NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1732E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.1000E+01

IM PART OF WRONSKIAN

2.00000 -.179667E-08
-.179667E-08 2.00000

RE PART OF RR MATRIX

-.194759 0.591176E-03
0.591176E-03 -.485403E-01

IM PART OF RR MATRIX

-.124681 -.172716
-.172716 0.931470

RE PART OF TT MATRIX

0.600459 0.317926E-01
-.317926E-01 -.276469

IM PART OF TT MATRIX

-.729781 -.150167
0.150167 0.134574E-01
Z RE PART OF FUNCTIONS
-25.0000 0.2716D+00 0.1259D+00 1631D+00 -.5370D+00 0.1506D-05 -.4406D-04 0.6915D-07 -.2284D-05

-19.3000 -.4592D+00 -.1030D+00 1646D+00 -.1211D+01 -.1728D-05 -.5374D-04 -.2039D-06 -.3182D-05

o oo

-13.6000 0.5769D+00 0.6829D-01 8088D-01 -.1298D+01 -.3777D-04 0.5932D-04 -.3999D-05 0.9632D-05
=7.9000 -.6232D+00 -.3071D-01 -.6435D-01 -.5763D+00 -.3348D-03 0.1124D-02 -.5789D-04 0.3906D-03
-3.6000 -.4115D+00 0.6691D-01 -.8351D-01 0.1351D+01 -.4633D-02 -.2046D-01 0.2638D-04 -.7678D-04

0.0000 -.8416D+00 -.7861D-01 -.9335D-02 0.4446D+00 0.5112D-01 0.1732D-01 0.2248D-02 -.6851D-02

3.6000 0.1490D-01 0.5461D-01 0.3718D-01 -.2780D+00 -.9231D-02 -.2399D-02 0.1300D-02 -.2460D-03

7.9000 -.5802D+00 -.5077D-01 0.8674D-01 0.2719D+00 -.4534D-03 -.2169D-03 0.6446D-04 -.1879D-04

13.6000 0.6802D+00 0.7978D-01 -.4223D-01 0.2431D+00 -.2701D-04 -.3867D-04 0.2948D-05 0.3128D-05

19.3000 -.7209D+00 -.1045D+00 -.1325D+00 0.8070D-01 -.5930D-05 -.2169D-04 0.4531D-06 0.1458D-05

25.0000 0.6664D+00 0.1165D+00 -.1531D+00 -.1120D+00 0.7601D-06 -.8680D-05 -.2445D-07 0.4751D-06
Z IM PART OF FUNCTIONS

-25.0000

.8982D+00 -.3837D-01 -.6149D-01 -.6546D+00 0.5103D-05 -.4498D-04 0.2851D-06 -.2320D-05



Description of the FORTRAN program KANTBP 3.0 47
-19.3000 0.7698D+00 0.8224D-01 0.5905D-01 -.1316D+01 0.1620D-04 -.4979D-04 0.1052D-05 -.2867D-05
-13.6000 -.5507D+00 -.1129D+00 0.1559D+00 -.1335D+01 0.6059D-05 0.8405D-04 0.3894D-06 0.1222D-04

-7.9000 0.3095D+00 0.1298D+00 0.1677D+00 -.5138D+00 0.3710D-03 0.1388D-02 0.1535D-04 0.4310D-03
-3.6000 -.5284D+00 0.8130D-01 -.1780D+00 0.1380D+01 0.1289D-01 -.1935D-01 0.2316D-02 0.6339D-04
0.0000 0.5262D+00 0.1487D+00 0.1846D-01 0.6235D+00 -.3506D-01 0.4285D-03 0.5965D-02 -.9390D-02
3.6000 0.7372D+00 0.1083D+00 0.1518D+00 0.1221D+00 0.1107D-02 0.5540D-02 0.1591D-02 -.3790D-03
7.9000 0.4353D+00 0.1061D+00 -.1328D+00 0.8857D-01 -.1206D-03 -.5087D-03 0.4282D-04 0.9200D-04
13.6000 -.2428D+00 -.8603D-01 -.1506D+00 -.1425D+00 0.2784D-04 -.5248D-04 -.2187D-05 0.5597D-05
19.3000 -.7902D-02 0.5291D-01 -.8108D-01 -.2684D+00 0.7047D-05 -.5197D-05 -.4906D-06 0.4708D-06
25.0000 0.2735D+00 -.1055D-01 0.2391D-01 -.2560D+00 0.6563D-05 0.4645D-05 -.3403D-06 -.2162D-06

CHECK PROPERTIES

|IRR_<-|"2 + |TT_<-|"2

1.00000
0.353866E-09

0.353866E-09

1.00000

MAXIMAL ABSOLU

IRR_->|"2 + |TT_->|"2

1.00000
.353867E-09

-.353867E-09

1.00000

MAXIMAL ABSOLU

TE ERROR

TE ERROR

=0.457613E-09

=0.457614E-09

RE PART: TT_->1 % RR_<- + RR_->"1 * TT_<-
0.179243E-09 0.475463E-09
-.475400E-09 0.169614E-09
IM PART: TT_->"1 % RR_<- + RR_->"1 * TT_<-
0.367987E-13 -.198433E-09
-.198434E-09 -.320299E-13
MAXIMAL ABSOLUTE ERROR =0.515210E-09
RE PART: RR<-"T - RR_<-
0.00000 -.128480E-09
0.128480E-09 0.00000
IM PART: RR.<-"T - RR_<-
0.00000 0.472197E-09

-.472197E-09  0.00000

MAXIMAL ABSOLU

TE ERROR =0.489364E-09

RE PART: RR_->T - RR_—>
0.00000 0.128480E-09
-.128480E-09 0.00000

IM PART: RR_->"T - RR_->
0.00000 -.472197E-09

0.472197E-09 0.00000

MAXIMAL ABSOLU

RE PART:

TT_->"T -

TE ERROR =0.489364E-09

TT_<-

.268571E-12
.309714E-11

IM

-.318056E-11
-.360267E-13

PART:

TT_->"T -

TT_<-

.251799E-12
.511769E-09

0.511789E-09
-.207664E-13

MAXIMAL ABSOLU

TE ERROR =0.511799E-09
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