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Waveguide modes of a planar optical waveguide
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Abstract. In a planar regular optical waveguide, propagation of polarized
monochromatic electromagnetic radiation obeys a law following from the Maxwell
equations. The Maxwell equations in Cartesian coordinates associated with the
waveguide geometry can be written as the two independent systems of equations:
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Each of the systems can be transformed to a second order ODE for the lead-
ing component and two other equations for straightforward computation of the
complementary electromagnetic field components. In doing so, the boundary con-
ditions for Maxwell’s equations are reduced to two pairs of boundary conditions
for obtained equations. In addition, the asymptotic conditions hold for each class
of waveguide modes. Thus, the problem of description of a complete set of modes
in a regular planar waveguide is formulated in terms of the eigenvalues problem
for the essentially self-adjoint second order differential operator:
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+ V (x)ψ = k2ψ.

For the operator, we find some results about its spectrum, complete sets of so-
lutions, and diagonalization by an isometric isomorphism (generalized Fourier
transformation); new basis functions are related to initial ones by simple trans-
formation formulas. The eigenvalues problem is equivalently reduced to the two
problems (left and right) of the one-dimensional potential scattering theory by
projection on the two branches of the continuous spectrum.
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