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Abstract. In a planar regular optical waveguide, propagation of polarized
monochromatic electromagnetic radiation obeys a law following from the Maxwell
equations. The Maxwell equations in Cartesian coordinates associated with the
waveguide geometry can be written as the two independent systems of equations:

Ex =
β

ε
Hy,

dEz

dx
=
ik0

ε

(

εµ− β2
)

Hy,
dHy

dx
= ik0εEz ,

Hx = −β
µ
Ey,

dHz

dx
= − ik0

µ

(

εµ − β2
)

Ey,
dEy

dx
= −ik0µHz.

Each of the systems can be transformed to a second order ODE for the lead-
ing component and two other equations for straightforward computation of the
complementary electromagnetic field components. In doing so, the boundary con-
ditions for Maxwell’s equations are reduced to two pairs of boundary conditions
for obtained equations. In addition, the asymptotic conditions hold for each class
of waveguide modes. Thus, the problem of description of a complete set of modes
in a regular planar waveguide is formulated in terms of the eigenvalues problem
for the essentially self-adjoint second order differential operator:

−d
2ψ

dx2
+ V (x)ψ = k2ψ.

For the operator, we find some results about its spectrum, complete sets of so-
lutions, and diagonalization by an isometric isomorphism (generalized Fourier
transformation); new basis functions are related to initial ones by simple trans-
formation formulas. The eigenvalues problem is equivalently reduced to the two
problems (left and right) of the one-dimensional potential scattering theory by
projection on the two branches of the continuous spectrum.

Keywords: waveguide propagation of electromagnetic radiation, equations of
waveguide modes of regular waveguide, guided modes, radiation modes, a com-
plete set of modes of a planar waveguide.
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.1 Introduction

To describe propagation of electromagnetic radiation in integrated optical waveg-
uides by the coupled-wave method [1, 2], by the comparison-of-waveguides method [3,
4], or by the incomplete Galerkin method [5, 6], we need to know a complete sys-
tem of waveguide modes of a regular planar waveguide [7, 8] and be able to work
with them. In this work we consider the special, but the most widespread case of
a multilayer waveguide.

There are the three types of waveguide modes in a regular planar optical waveg-
uide: guided modes, substrate radiation modes, and cover radiation modes. The
regular waveguide consists of a dielectric waveguide layer (or a few ones) of refrac-
tive index nf (or nf1, ..., nfN) and the dielectric cladding with smaller refraction
indices: ns in the substrate layer and nc in the cover layer. We will use Cartesian
coordinates associated with the waveguide geometry. The waveguide layer thick-
ness, say d, is about of the monochromatic electromagnetic radiation wavelength,
while thicknesses of the substrate and cover layer are supposed to be much greater
and, in our model, will be considered as infinite quantities.

The mathematical model of light propagation in a waveguide consists of the
Maxwell equations supplemented by the matter equations and boundary conditions.
In the coordinates adapted to the waveguide geometry as in Figure 1, the Maxwell
equations can be split into two independent sets for the TE and TM polarizations.
Their solutions are, respectively,

Ey (x, y, z, t) = Ey (x) exp {iωt− iβz}

and

Hy (x, y, z, t) = Hy (x) exp {iωt− iβz} ,

where ω is the angular frequency, β is the phase delay coefficient of the waveguide
mode, x, y, z are space dimensionless coordinates, and the functions Ey (x) and
Hy (x) for TE and TM modes, respectively, are determined by the corresponding
equations

d2Ey
dx2

+ n2 (x)Ey = β2Ey,

d2Hy

dx2
+ n2 (x)Hy = β2Hy.

Both equations for the modes can be written in the more customary form

− d2ψ

dx2
(k, x) + V (x)ψ (k, x) = k2ψ (k, x) . (1)

Here V (x) = −n2 (x) is a piecewise constant function (constant in each of the
layer), k2 = −β2 is the spectral parameter, and ψ (x) = Ey (x) or Hy (x).
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Figure 1: Waveguide is formed by media 1–3. The figure indications are: 1 is a

framing medium or cover layer (air) with refractive index nc; 2 is a waveguide layer

(film) with a refractive index nf ; 3 is a substrate with refractive index ns; d is the

thickness of the waveguide layer. Film and substrate are homogeneous in the y and

z directions, the substrate is usually much thicker than the film.

.2 Formulation of the problem

Assumptions:

• A planar dielectric waveguide consists of homogeneous layers of isotropic ma-
terials, and the boundaries between the layer media are ideal and parallel to
the xy plane.

• Electromagnetic radiation propagates in the longitudinal horizontal direction
(along the z-axis) and is invariant along the transverse horizontal direction
(along the y-axis).

• Electromagnetic radiation in the waveguide is monochromatic (harmonic time
dependence).

• Electromagnetic radiation, for simplicity, is assumed to be linearly polarized.

The Maxwell equation in Cartesian coordinates associated with the waveguide
geometry has the form (in the Gaussian units)

rot ~H =
1

c

∂ ~D

∂t
, rot ~E = −1

c

∂ ~B

∂t
, (2)
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and can be split into the two independent sets of linear ordinary differential equa-
tions

∂Hx

∂z
− ∂Hz

∂x
= ik0εEy, Hx = − 1

ik0µ

∂Ey
∂z

, Hz =
1

ik0µ

∂Ey
∂x

, (3)

∂Ex
∂z

− ∂Ez
∂x

= ik0µHy, Ex =
1

ik0ε

∂Hy

∂z
, Ez = − 1

ik0ε

∂Hy

∂x
, (4)

where k0 = ω/c is the vacuum wave number, c is the speed of light in vacuum,
ε and µ are, respectively, the dielectric constant and magnetic permeability, and
n2 = εµ is the squared refractive index of a medium. In chosen coordinates, the
boundary conditions

~Eτ
∣

∣

∣

1

= ~Eτ
∣

∣

∣

2

, ~Hτ
∣

∣

∣

1

= ~Hτ
∣

∣

∣

2

(5)

can be reduced to those for, respectively, TE and TM modes:

Ey|1 = Ey|2 , Hz|1 = Hz|2 , (6)

Hy|1 = Hy|2 , Ez|1 = Ez|2 . (7)

Solutions of the equations (3)–(6) and (4)–(7) yield vertical (along x axis) distri-
butions of electromagnetic field for TE and TM modes, respectively. As functions
of all the spacetime coordinates, electromagnetic fields of the modes can be written
in the form

(

~E
~H

)

(x, y, z, t) =

(

~E
~H

)

(x) exp {iωt− ik0βz} . (8)

Transforming (3) and (4) to the form

d2Ey
dx2

+ k20
(

εµ− β2
)

Ey (x) = 0, Hz =
1

ik0µ

dEy
dx

, Hx = −β
µ
Ey, (9)

ε
d

dx

(

1

ε

dHy

dx

)

+ k20
(

εµ− β2
)

Hy (x) = 0, Ez = − 1

ik0ε

∂Hy

∂x
, Ex =

β

ε
Hy, (10)

both the sets can be written in the more customary form

− d2ψ

dx2
(k, x) + V (x)ψ (k, x) = k2ψ (k, x) . (11)

Here V (x̃) = −n2 (k0x) = −ε (k0x)µ is a piecewise constant function (constant in
each of the layer), k2 = −β2 is the spectral parameter, ψ (x̃) = Ey (x) or Hy (x),
and x̃ = 2π(x/λ0) is a dimensionless variable. Later on we use the notation x
instead of the x̃.

The boundary conditions (6) and (7) hold for the function ψ (x̃) and its ’deriva-
tive’

φ (x̃) =
dEy (x)

dx
or

1

n2 (x)

dHy (x)

dx
,
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so that

ψ|
1
= ψ|

2
, φ|

1
= φ|

2
. (12)

The problem of finding waveguides modes is thus reduced to the problem (11)–
(12) with a potential V (x) for eigenvalues k and eigenfunction ψ (k, x) obeying the
asymptotic conditions (Figure 2)

V (x) −−−−→
x→−∞

V− , V (x) −−−→
x→∞

V+ . (13)

Figure 2: A schematic diagram of the potential.

In the problem (11)–(13), the operator spectrum consists of:

• a finite number of eigenvalues of the discrete spectrum kj = iκj : k2j ∈
(minV (x) , min (V−, V+)) and the corresponding eigenfunctions (guided modes);

• a continuous nondegenerate spectrum k− : k2
−

∈ (V−, ∞) and the corre-
sponding generalized eigenfunctions (substrate radiation modes);

• a continuous nondegenerate spectrum k+ : k2+ ∈ (V+, ∞) and the corre-
sponding generalized eigenfunctions (cover radiation modes).

In a multilayer waveguide with a piecewise constant potential V (x), solutions to
the problem (11)–(13) (in the notation of (9)–(10)) in the space of square integrable
functions, that is, in the case of discrete spectrum kj = iκj, were considered in a
large number of research studies, both theoretical and computational. There are
basic studies [9, 10, 11] and reviews [12, 13, 14, 15, 16] on integrated optics devoted
to guided modes in waveguides. The pioneering [9, 10, 11] and recent works [17,
18, 19] on integrated optics are devoted to numerical methods of constructing the
function ψj (x) as a linear combination of a fundamental system of solutions of the
equation (11) in each of the layers, with subsequent matching these functions at
the layer interfaces according to (12).
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.3 Discrete and continuous eigenvalues and corresponding

(classical and generalized) eigenfunctions

Schrödinger’s operator on the x-axis,

Ĥy (x) ≡ −d
2y

dx2
(x) + V (x) y (x) , (14)

where the potential V (x) obeying the conditions

lim
x→−∞

V (x) = V−, lim
x→+∞

V (x) = V+, (15)

∫

0

−∞

|V (x)− V−| |x| dx <∞,

∫

∞

0

|V (x)− V+| |x| dx <∞ , (16)

is essentially self-adjoint.
The equation

Ĥy = k2y (17)

has a unique solution y− (k, x) having the asymptotic behaviour

exp {ip− (k) x} y− (k, x) −−−−→
x→−∞

1,

exp {ip− (k)x} y′
−
(k, x) −−−−→

x→−∞

−ip− (k) ,
(18)

if Im (p− (k)) > 0, where p− (k)2 ≡ k2 − V− with V− obeying the condition (16).
The equation

Ĥy = k2y (19)

has a unique solution y+ (k, x) having the asymptotic behaviour

exp {−ip+ (k)x} y+ (k, x) −−−→
x→∞

1,

exp {−ip+ (k)x} y′+ (k, x) −−−→
x→∞

ip+ (k) .
(20)

if Im (p+ (k)) > 0, where p+ (k)2 ≡ k2−V+ with V+ obeying the condition (16). For

real p− (k) 6= 0, the pair of functions
{

y− (k, x) , y− (k, x)
}

make up a fundamental

system of solutions of the equation (8). Therefore, the solution y+ (k, x) can be
represented as

y+ (k, x) = a− (k) y− (k, x) + b− (k) y− (k, x) . (21)

For real p+ (k) 6= 0, the pair of functions
{

y+ (k, x) , y+ (k, x)
}

make up a funda-

mental system of solutions of the equation (8). Therefore, the solution y− (k, x) can
be represented as

y− (k, x) = a+ (k) y+ (k, x) + b+ (k) y+ (k, x) . (22)
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Coefficients a− (k) and a+ (k) are inversely proportional to the transmission coef-
ficients from the left to right and from the right to left, respectively; they can be
expressed in terms of the Wronskian of y± (k, x), namely,

a− (k) =W (y−, y+)/2ip− (k) and a+ (k) = W (y−, y+)/2ip+ (k), (23)

and can be analytically continued into the regions Im(p−(k))>0 and Im(p+(k))>0,
respectively. Coefficients b− (k) and b+ (k), which are proportional to the reflection
coefficients from the left to right and from the right to left, respectively, can be
expressed in terms of the Wronskian of y± (k, x) as

b− (k) =W (y+, ȳ−)/2ip− (k) and b+ (k) =W (ȳ+, y−)/2ip+ (k). (24)

The zeros of the functions a− (k) and a+ (k) are eigenvalues of the operator (14)
with the normalized eigenfunctions

yn (x) = c−n y− (kn, x) = c+n y+ (kn, x) . (25)

In order to distinguish these solutions of the equation (19) from those constructed
below and having other asymptotic behaviours, we introduce the new notations
Vs = V− and Vc = V+, ps (k) = p− (k) and pc (k) = p+ (k).

In the region Imps (k) , k
2 > Vs, (generalized) eigenfunctions of the operator

(14) are

ys (k, x) =
1√
2π

{

y+ (k, x) +R+ (k) y+ (k, x)
}

, k2 ∈ (Vs, ∞) . (26)

In the region Impc (k) , k
2 > Vc (generalized) eigenfunctions of the operator (14)

are

yc (k, x) =
1√
2π

{

y− (k, x) +R− (k) y− (k, x)
}

, k2 ∈ (Vc, ∞) , (27)

where the reflection coefficients are given by

R− (k) =
b− (k)

a− (k)
=
W (y+, ȳ−)

W (y−, y+)
and R+ (k) =

b+ (k)

a+ (k)
=
W (ȳ+, y−)

W (y−, y+)
.

The corresponding expressions for the transmission coefficients are

T− (k) =
1

a− (k)
=

2ip− (k)

W (y−, y+)
and R+ (k) =

1

a+ (k)
=

2ip+ (k)

W (y−, y+)
.

Theorem 1. Let yα (k, x) be a system of functions defined by the expressions (25)–

(27). Then it makes up a complete orthonormal system of generalized eigenfunc-

tions of the operator (14) so that the generalized Fourier transformation f → g,

given by

f (x) =

∞
∫

Vs

gs (k)ys (k, x) dps (k) +

∞
∫

Vc

gc (k)yc (k, x) dpc (k) +

N(Ĥ)
∑

n=1

gn (k)yn (k, x) ,

(28)
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where

gs (k) =

∞
∫

−∞

f (x)ys (k, x)dx, gc (k) =

∞
∫

−∞

f (x) yc (k, x)dx,

gn (k) =

∞
∫

−∞

f (x) yn (k, x)dx,

(29)

defines a unitary isomorphism between the equipped Hilbert spaces S ⊂ L2 (R) ⊂ S ′

and S ⊂ L2 (Mk, dp (k)) ⊂ S ′. Here L2 (Mk, dp (k)) is the Hilbert space of the square

integrable functions on the space Mk endowed with the measure dp (k), where Mk

consists of the half-line R
+
s = {k : k2 > Vs} with the measure dps (k), the half-

line R
+
c = {k : k2 > Vc} with the measure dpc (k), and a finite collection of points

kn, n = 1, ..., N with the point measures δ(k − kn)dk. The image of Ĥ under this

isomorphism is the operator of multiplication by k2.

The introductory material of this section briefly reproduces the results of [8, 23].

.4 Solution of the eigenvalue and eigenfunction problem

The guided modes in a multilayer waveguide are described by the problem (11)–
(13) with values of the spectral parameter k2 ∈ (Vf ,min (Vs, Vc)), so that k2 < 0
(Figure 3). Therefore, it is convenient to introduce the notation kj = iκj ⇔ k2j =
−κ2j , where kj is an eigenvalue of the problem (11)—(13), and κj is the phase delay
coefficient of the corresponding waveguide mode ψj (x). We have ψj (x) ∈ L2 (R),
so that the asymptotic behaviour ψj (x) −−−−→

x→±∞

0 takes place.

Figure 3: A schematic diagram, showing the location of the discrete spectral value

relative to the potential, k2 ∈ (Vf ,min (Vs, Vc))

By requiring that the functions ψTE = Ey, φ
TE = Hz =

1

ik0µ

dEy

dx
∼ dψTE

dx
satisfy

the boundary conditions (12) at the points x = a and x = b (at the layer interfaces),
we obtain a collection of particular solutions from the general solutions in the
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subregions (−∞, a), (a, b), (b,∞); this collection gives the unique (up to a nonzero
complex factor) solution of the problem (11)–(13). The analogous assertion also

holds for the functions ψTM = Hy, φ
TM = Ez = − 1

ik0ε

dHy

dx
∼ dψTM

dx
.

So, in the region (−∞, a), the general solutions of the equation (11) (in which
the coefficient Vs is supposed to be constant) obeying the asymptotic behaviour
ψ (x) −−−−→

x→−∞

0 have the forms (for TE and TM modes, respectively)

ψTEj (x) = As exp (γsx) , φTEj (x) =
γs

ik0µs
As exp (γsx) , γs =

√

Vs − k2, γs > 0,

ψTMj (x) = Bs exp (γsx) , φ
TM
j (x) = − γs

ik0εs
Bs exp (γsx) , γs =

√

Vs − k2, γs > 0.

In the region (b,∞), the general solutions of the equation (11) obeying the asymp-
totic behaviour ψ (x) −−−→

x→∞

0 have the forms

ψTEj (x) = Ac exp (−γcx) , φTEj (x) = − γc
ik0µc

Ac exp (−γcx) , γc =
√

Vc − k2, γc > 0,

ψTMj (x) = Bc exp (−γcx) , φTMj (x) =
γc
ik0εc

Bc exp (−γcx) , γc =
√

Vc − k2, γc > 0.

In the region (a, b), the general solutions of the equation (11) have the forms (for
TE and TM modes, respectively)

ψTEj (x) = A+

f exp (iχfx) + A−

f exp (−iχfx) ,
φTEj (x) =

χf
k0µf

[

A+

f exp (iχfx)−A−

f exp (−iχfx)
]

, χf =
√

k2 − Vf ,

ψTMj (x) = B+

f exp (iχfx) +B−

f exp (−iχfx) ,
φTMj (x) = − χf

k0εf

[

B+

f exp (iχfx)−B−

f exp (−iχfx)
]

, χf =
√

k2 − Vf .

Thus, these solutions are defined by (for TE and TM modes, respectively) the col-

lection of the amplitudes
(

As, A
+

f , A
−

f , Ac
)T

obeying the system of linear equations

ψTEj (a− 0) = ψTEj (a+ 0) ⇔ As exp (γsa) = A+

f exp (iχfa) + A−

f exp (−iχfa) ,

φTEj (a− 0) = φTEj (a + 0) ⇔
⇔ γs

ik0µs
As exp (γsa) =

χf
k0µf

[

A+

f exp (iχfa)− A−

f exp (−iχfa)
]

,

ψTEj (b− 0) = ψTEj (b+ 0) ⇔ A+

f exp (iχfb) + A−

f exp (−iχfb) = Ac exp (−γcb) ,

φTEj (b− 0) = φTEj (b+ 0) ⇔
⇔ χf

k0µf

[

A+

f exp (iχfb)−A−

f exp (−iχfb)
]

= − γc
ik0µc

Ac exp (−γcb) ,
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and the collection of the amplitudes
(

Bs, B
+

f , B
−

f , Bc

)T
obeying the system of linear

equations

ψTMj (a− 0) = ψTMj (a+ 0) ⇔ Bs exp (γsa) = B+

f exp (iχfa) +B−

f exp (−iχfa) ,

φTMj (a− 0) = φTMj (a+ 0) ⇔
⇔ − γs

ik0εs
Bs exp (γsa) = − χf

k0εf

[

B+

f exp (iχfa)− B−

f exp (−iχfa)
]

,

ψTMj (b− 0) = ψTMj (b+ 0) ⇔ B+

f exp (iχfb) +B−

f exp (−iχfb) = Bc exp (−γcb) ,

φTMj (b− 0) = φTMj (b+ 0) ⇔
⇔ − χf

k0εf

[

B+

f exp (iχfb)− B−

f exp (−iχf b)
]

=
γc
ik0εc

Bc exp (−γcb) .

These systems have the form of homogeneous ones,

M̂TE (k)
(

As, A
+

f , A
−

f , Ac
)T

= ~0, M̂TM (k)
(

Bs, B
+

f , B
−

f , Bc

)T
= ~0,

therefore they have nontrivial solutions if and only if the solvability conditions (for
TE and TM modes, respectively),

det M̂TE (k) = 0, det M̂TM (k) = 0,

are hold. Solving these equations then gives the desired discrete values kTEj , kTMj :
k2j ∈ (Vf , min (Vs, Vc)).

This method of computing the eigenvalues kTEj and kTMj , and the corresponding

eigenvectors
(

As, A
+

f , A
−

f , Ac
)T

and
(

Bs, B
+

f , B
−

f , Bc

)T
is described in the works [9,

10] and in the monographs [12, 13, 14, 15, 16]. A detailed consideration of the
method is given in the JINR preprint [17] where one also find computer realizations
of both the dispersion relations (Figure 4) and the corresponding distributions
along the x-axis of electric and magnetic field strengthes for TE and TM modes
(Figure. 5).

.5 Computing the cover radiation modes

We consider solutions of the problem (11)–(13) in the region of continuous spectrum,
namely, k2 ∈ (Vc, ∞) (Figure 6).

Solutions y+ (k, x) and y− (k, x) of the problem (19) satisfy the Jost asymptotic
conditions [22, 23]. In contrast, the solutions ys (k, x) and yc (k, x) of the problem
(19) satisfy the asymptotic conditions for the scattering by the potential V (x) [24].
In particular, the asymptotic behavior of the solutions yc (k, x) corresponds to the
scattering problem for a plane wave running on the potential V (x) from the right
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Figure 4: The dispersion curves corresponding to the first spectral values: phase

delay coefficient vs layer thickness

Figure 5: The curves for the field strength (along the vertical axis) corresponding

to the first spectral values for the guided modes

Figure 6: A schematic diagram, showing the location of the cover mode’s continuous

spectral value relative to the potential.

(from +∞), which then turns out to be partially reflected backward with the re-
flection coefficient R− (k) and partially transmitted over the potential (in the form
of a plane wave propagating to −∞) with the transmission coefficient T− (k). All
the solutions yc (k, x) for all k

2 ∈ (Vc,∞) have the same asymptotic behaviour.

Next, the asymptotic behavior of solutions ys (k, x) corresponds to the scatter-
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ing problem for a plane wave running on the potential V (x) from the left (from
−∞) to right, which is partially reflected to the left with the reflection coefficient
R+ (k) and partially transmitted over the potential to the right, either as a plane
wave propagating with the transmission coefficient T+ (k) or as an evanescent wave
decaying with the weight Ac (k) for, respectively, k

2 ∈ (Vc,∞) and k2 ∈ (Vs, Vc).
The cover radiating modes are considered in the works [7, 8, 22, 23] as gener-

alized eigenfunctions for the equations (11) with the boundary conditions (12) and
the spectral values k ∈ (Vc,∞). As in the case of the guided modes, they can be
constructed by matching the general solutions of the equations (11) at the bound-
aries of the regions (−∞, a), (a, b), and (b,∞). Solving of the one-dimensional
potential scattering problem with coincident asymptotic behaviours is given in the
works [26, 27].

So, in the region (−∞, a), the general solutions of the equation (11) (in which the
coefficient Vs is supposed to be constant) for TE and TM modes have, respectively,
the forms

ψTEc (k, x) = T TE
−

(k) exp (−ipsx) , φTEc (x) = − ps
k0µs

T TE
−

(k) exp (−ipsx) ,

and

ψTMc (k, x) = T TM
−

(k) exp (−ipsx) , φTMc (x) =
ps
k0εs

T TM
−

(k) exp (−ipsx) .

In the region (b,∞), the general solutions of the equation (11) have the forms

ψTEc (k, x) = exp (−ipcx) +RTE
−

(k) exp (ipcx) ,

φTEc (x) = − pc
k0µc

[

exp (−ipcx)− RTE
−

(k) exp (ipcx)
]

,

ψTMc (k, x) = exp (−ipcx) +RTM
−

(k) exp (ipcx) ,

φTMc (x) =
pc
k0εc

[

exp (−ipcx)− RTM
−

(k) exp (ipcx)
]

.

In the region (a, b), the general solutions of the equation (11) have the forms (for
TE and TM modes, respectively)

ψTEc (x) = A+

f exp (iχfx) + A−

f exp (−iχfx) ,
φTEc (x) =

χf
k0µf

[

A+

f exp (iχfx)−A−

f exp (−iχfx)
]

,

ψTMc (x) = B+

f exp (iχfx) +B−

f exp (−iχfx) ,
φTMc (x) = − χf

k0εf

[

B+

f exp (iχfx)−B−

f exp (−iχfx)
]

.

Thus, these solutions are defined by (for TE and TM modes, respectively) the col-

lection of the amplitudes
(

T TE
−
, A+

f , A
−

f , R
TE
−

)T
obeying the system of linear equa-

tions
T TE
−

(k) exp (−ipsa) = A+

f exp (iχfa) + A−

f exp (−iχfa) ,
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− ps
k0µs

T TE
−

(k) exp (−ipsa) =
χf
k0µf

[

A+

f exp (iχfa)− A−

f exp (−iχfa)
]

,

A+

f exp (iχfb) + A−

f exp (−iχfb) = exp (−ipcb) +RTE
−

(k) exp (ipcb) ,

χf
k0µf

[

A+

f exp (iχfb)− A−

f exp (−iχf b)
]

= − pc
k0µc

[

exp (−ipcb)−RTE
−

(k) exp (ipcb)
]

,

and the collection of the amplitudes
(

T TM
−

, A+

f , A
−

f , R
TM
−

)T
obeying the system of

linear equations

T TM
−

(k) exp (−ipsa) = B+

f exp (iχfa) +B−

f exp (−iχfa) ,

ps
k0εs

T TM
−

(k) exp (−ipsa) = − χf
k0εf

[

B+

f exp (iχfa)−B−

f exp (−iχfa)
]

,

B+

f exp (iχfb) +B−

f exp (−iχfb) = exp (−ipcb) +RTM
−

(k) exp (ipcb) ,

− χf
k0εf

[

B+

f exp (iχfb)−B−

f exp (−iχfb)
]

=
pc
k0εc

[

exp (−ipcb)− RTM
−

(k) exp (ipcb)
]

.

In both cases we obtain inhomogeneous systems of algebraic linear equations of the
forms

M̂TE (k)
(

T TE
−
, A+

f , A
−

f , R
TE
−

)T
=

(

0, 0, exp (−ipcb) ,−
pc
k0µc

exp (−ipcb)
)T

,

M̂TE (k)
(

T TM
−

, B+

f , B
−

f , R
TM
−

)T
=

(

0, 0, exp (−ipcb) ,
pc
k0εc

exp (−ipcb)
)T

,

so that the solutions exist for any k2 ∈ (Vc,∞) and are unique up to a nonzero
complex factor (Figure 7).
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Figure 7: The curves for the field strength (along the vertical axis) corresponding

to the first spectral values for the cover radiation modes
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.6 Computing the substrate radiation modes

The substrate radiation modes are considered in the works [7, 8, 22, 23] as general-
ized eigenfunctions for the equations (11) with the boundary conditions (12). Solu-
tion of the one-dimensional potential scattering problem with coincident asymptotic
behaviours is given in the works [20, 21, 25, 26]. The solutions have different forms
for the two regions of the spectral parameter values, namely, k2 ∈ (Vs, Vc) and
k2 ∈ (Vc,∞). However, as in the case of the guided modes, the whole solution
can be constructed by matching the general solutions of the equations (11) at the
boundaries of the regions (−∞, a), (a, b), and (b,∞).

A) The spectral value location for the case k2 ∈ (Vs, Vc) is shown on the
schematic diagram in Figure 8.

Figure 8: A schematic diagram, showing the location of the substrate mode’s con-

tinuous spectral value relative to the potential, k2 ∈ (Vs, Vc).

In the region (−∞, a), the general solutions of the equation (11) for k2 ∈ (Vs, Vc)
are

ψTEs (k, x) = exp (ips (k) x) +RTE
+ (k) exp (−ips (k) x) ,

φTEs (k, x) =
ps
k0µs

[

exp (ips (k)x)−RTE
+ (k) exp (−ips (k)x)

]

,

ψTMs (k, x) = exp (ips (k) x) +RTM
+ (k) exp (−ips (k)x) ,

φTMs (k, x) = − ps
k0εs

[

exp (ips (k)x)− RTM
+ (k) exp (−ips (k) x)

]

.

In the region (a, b), the general solutions of the equation (11) fork2 ∈ (Vs, Vc) are

ψTEs (k, x) = A+

f exp (iχfx) + A−

f exp (−iχfx) ,

φTEf (k, x) =
χf
k0µf

[

A+

f exp (iχfx)− A−

f exp (−iχfx)
]

,

ψTMs (k, x) = B+

f exp (iχfx) +B−

f exp (−iχfx) ,

φTMf (k, x) = − χf
k0εf

[

B+

f exp (iχfx)− B−

f exp (−iχfx)
]

.
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In the region (b,∞), the general solutions of the equation (11) for k2 ∈ (Vs, Vc)
have, owing to the asymptotic vanishing, the forms

ψTEs (k, x) = Ac exp (−γcx) , φTEs (x) = − γc
ik0µc

Ac exp (−γcx) ,

ψTMs (k, x) = Bc exp (−γcx) , φTMs (x) =
γc
ik0εc

Bc exp (−γcx) .

Thus, these solutions are defined by (for TE and TM modes, respectively) the

collection of the amplitudes
(

RTE
+ , A+

f , A
−

f , Ac
)T

obeying the system of linear equa-
tions

exp (ips (k) a) +RTE
+ (k) exp (−ips (k) a) = A+

f exp (iχfa) + A−

f exp (−iχfa) ,

ps
k0µs

[

exp (ips (k) a)−RTE
+ (k) exp (−ips (k) a)

]

=

=
χf
k0µf

[

A+

f exp (iχfa)− A−

f exp (−iχfa)
]

,

A+

f exp (iχfb) + A−

f exp (−iχfb) = Ac exp (−γcb) ,
χf
k0µf

[

A+

f exp (iχfb)−A−

f exp (−iχfb)
]

= − γc
ik0µc

Ac exp (−γcb) ,

and the collection of the amplitudes
(

RTM
+ , B+

f , B
−

f , Bc

)T
obeying the system of

linear equations

exp (ips (k) a) +RTM
+ (k) exp (−ips (k) a) = B+

f exp (iχfa) +B−

f exp (−iχfa) ,

− ps
k0εs

[

exp (ips (k) a)− RTM
+ (k) exp (−ips (k) a)

]

=

= − χf
k0εf

[

B+

f exp (iχfa)− B−

f exp (−iχfa)
]

,

B+

f exp (iχfb) +B−

f exp (−iχf b) = Bc exp (−γcb) ,

− χf
k0εf

[

B+

f exp (iχfb)−B−

f exp (−iχfb)
]

=
γc
ik0εc

Bc exp (−γcb) .

In both cases we obtain inhomogeneous systems of algebraic linear equations of the
forms

M̂TE (k)
(

RTE
+ , A+

f , A
−

f , Ac
)T

=

(

− exp (ipsa) ,−
ps
k0µs

exp (ipsa) , 0, 0

)T

,

M̂TM (k)
(

RTM
+ , B+

f , B
−

f , Bc

)T
=

(

− exp (ipsa) ,
ps
k0εs

exp (ipsa) , 0, 0

)T

,
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Figure 9: The curves for the field strength (along the vertical axis) for the substrate

radiation modes decaying in the cover layer.

Figure 10: A schematic diagram, showing the location of the substrate mode’s

continuous spectral value relative to the potential, k2 ∈ (Vc,∞).

so that the solutions exist for any k2 ∈ (Vc,∞) and are unique up to a nonzero
complex factor (Figure 9).

B) The spectral value location for the case k2 ∈ (Vc,∞) is shown on the
schematic diagram in Figure 10.

The guided modes in a multilayer waveguide are described by the problem (11)–
(13) with values of the spectral parameter k2 ∈ (Vf ,min (Vs, Vc)), so that k2 < 0
(Figure 3).

In the regions (−∞, a) and (a, b), the general solutions with k2 ∈ (Vc,∞) have
the same form as those for k2 ∈ (VsVc), while in the region (b,∞) they are of the
forms

ψTEs (k, x) = T TE+ (k) exp (ipc (k) x) , φ
TE
s (k, x) =

pc (k)

k0µc
T TE+ (k) exp (ipc (k) x) ,

ψTMs (k, x) = T TM+ (k) exp (ipc (k)x) , φ
TM
s (k, x) = −pc (k)

k0εc
T TM+ (k) exp (ipc (k)x) .

Consequently, the second pair of the matching equations for TE and TM modes
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takes, respectively, the form

A+

f exp (iχfb) + A−

f exp (−iχfb) = T TE+ (k) exp (ipc (k) b) ,

χf
k0µf

[

A+

f exp (iχfb)− A−

f exp (−iχfb)
]

=
pc (k)

k0µc
T TE+ (k) exp (ipc (k) b)

and
B+

f exp (iχfb) +B−

f exp (−iχfb) = T TM+ (k) exp (ipc (k) b) ,

− χf
k0εf

[

B+

f exp (iχfb)−B−

f exp (−iχfb)
]

= −pc (k)
k0εc

T TM+ (k) exp (ipc (k) b) .

As above, in both cases we obtain inhomogeneous systems of algebraic linear equa-
tions of the forms

M̂TE (k)
(

RTE
+ , A+

f , A
−

f , T
TE
+

)T
=

(

− exp (ipsa) ,−
ps
k0µs

exp (ipsa) , 0, 0

)T

and

M̂TM (k)
(

RTM
+ , B+

f , B
−

f , T
TM
+

)T
=

(

− exp (ipsa) ,
ps
k0εs

exp (ipsa) , 0, 0

)T

,

so that the solutions exist for any k2 ∈ (Vc,∞) and are unique up to a nonzero
complex factor (Figure 11).
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Figure 11: The curves for the field strength (along the vertical axis) for the substrate

radiation modes oscillating in the cover layer.

.7 Conclusion

Solution of many problems of integrated optics includes spectral analysis and spec-
tral synthesis based on the complete system of solutions of a second-order differen-
tial operator governing the waveguide modes in an open waveguide. In the simplest
case, a regular waveguide operator is essentially self-adjoint and has the mixed
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spectrum: the finite nondegenerate discrete spectrum and two branches of the con-
tinuous spectrum. This complete set of modes is used to describe the waveguide
propagation of electromagnetic radiation by the comparison-of-waveguides method,
and also can be used in the incomplete Galerkin method for integrated optical
waveguides.

In this work we consider the special, but the most widespread case of a multilayer
waveguide. We give numerical solutions for the three types of waveguide modes:
guided modes, substrate radiation modes, and cover radiation modes.

The main theoretical result, on which our analysis in this article is based, is the
following theorem.

Theorem 2. Let yα (k, x) be a system of functions defined by the expressions (25)–

(27). Then it makes up a complete orthonormal system of generalized eigenfunc-

tions of operator (14) so that generalized Fourier transformation defines a uni-

tary isomorphism between the equipped Hilbert spaces S ⊂ L2 (R) ⊂ S ′ and S ⊂
L2 (Mk, dp (k)) ⊂ S ′. Here L2 (Mk, dp (k)) is the Hilbert space of the square in-

tegrable functions on the space Mk endowed with the measure dp (k), where Mk

consists of the half-line R
+
s = {k : k2 > Vs} with the measure dps (k), the half-

line R
+
c = {k : k2 > Vc} with the measure dpc (k), and a finite collection of points

kn, n = 1, ..., N with the point measures δ (k − kn) dk. The image of Ĥ under this

isomorphism is the operator operator of multiplication by k2.

For the eigenvalue problem with a piecewise constant potential (in a multi-
layer waveguide) in the space of square integrable functions, numerical solutions
for discrete spectrum kj = iκj were considered in a large number of research stud-
ies, both theoretical and computational. There are basic studies [9, 10, 11] and
reviews [12, 13, 14, 15, 16] on integrated optics devoted to guided modes in waveg-
uides. The pioneering [9, 10, 11] and recent works [17, 18, 19] on integrated optics
are devoted to numerical methods of constructing the function ψj (x) as a linear
combination of a fundamental system of solutions of the equation (11) in each of the
layers, with subsequent matching these functions at the layer interfaces according
to (12).

In this article we present numerical results for the cover radiation modes and
substrate radiation modes. Our modelling method consists in reducing the initial
potential scattering problem (in the case of the continuous spectrum) to the equiv-
alent ones for the Jost functions: the Jost solution from the left for the substrate
radiation modes and the Jost solution from the right for the cover radiation modes.

Acknowledgements.The authors are grateful to prof. Tsirulev A.N. for his con-
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