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Abstract. The present paper deals with a generalization of the homogeneous
single server finite source retrial queuing-inventory system with Erlang-k service
in which the items may be serviced before it is delivered to the customers. We
assume that not all customers would be requiring service on items. Hence we
propose to have two types of customers, say, high priority and low priority. The
high priority customer demands a unit item with require service on the demanded
item before accepting it and the low priority customer demands a unit item but
do not require any service on his demanded item (i.e., service time is zero). The
service time of high priority customer follows an Erlang k-type distribution with
service rate kµ for each phase. Retrial is introduced for low priority customers
only. The life time of the item is assumed to have exponential distributions. The
inventory is replenished according to an (s, S) policy and the replenishing times
are assumed to be exponentially distributed. The joint probability distribution
of the number of high priority customers in the waiting area, the number of low
priority customers in the orbit and the inventory level is obtained for the steady
state case. Some important system performance measures in the steady state are
derived.
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.1 Introduction

Research on queueing systems with inventory control has captured much attention
of researchers over the last decades. Many researchers assumed that customers
arrive at the service facility one by one and require service. In order to complete
the customer service, an item from the inventory is needed. A served customer
departs immediately from the system and the on - hand inventory decreases by one
at the moment of service completion. This type of system is called a queueing -
inventory system [13]. Berman and Kim [2] analyzed a queueing - inventory system
with Poisson arrivals, exponential service times and zero lead times. The authors
proved that the optimal policy is never to order when the system is empty. Berman
and Sapna [5] studied queueing - inventory systems with Poisson arrivals, arbitrary
distribution service times and zero lead times. The optimal value of the maximum
allowable inventory which minimizes the long - run expected cost rate has been
obtained.

Berman and Sapna [6] discussed a finite capacity system with Poisson arrivals,
exponential distributed lead times and service times. The existence of a stationary
optimal service policy has been proved. Berman and Kim [3] addressed an infinite
capacity queueing - inventory system with Poisson arrivals, exponential distributed
lead times and service times. The authors identified a replenishment policy which
maximized the system profit. Berman and Kim [4] studied internet based supply
chains with Poisson arrivals, exponential service times, the Erlang lead times and
found that the optimal ordering policy has a monotonic threshold structure. The
M/M/1 queueing - inventory system with backordering was investigated by Schwarz
and Daduna [12]. Krishnamoorthy et al., [10] introduced an additional control
policy (N-policy) into (s, S) inventory system with positive service time.

In a hairdresser’s shop, shoe mart, show rooms, etc., a finite number of chairs
are provided to waiting customers. All chairs might be occupied at arrival instant,
and thus, an arriving customer is not able to enter the queue. In this case, the
customer may not leave the system forever, but might retry to be served at another
time. This type of system is called a retrial queueing - inventory system. Artalejo
et al. [1] were the first to study inventory policies with positive lead time and retrial
of customers who could not get service during their earlier attempts to access the
service station; it may be noted that Ushakumari [15] obtained analytical solution
to this model. Krishnamoorthy and Jose [9] analyzed and compared three (s, S)
policies with positive service time and retrial of customers. They have assumed
Poisson arrivals, exponential distributed lead times and retrial times. In that work,
the authors proceeded with an algorithmic analysis of the system.

An important issue in the retrial queueing-inventory system with two classes
of customers is the priority assignment problem. For example, in assembly manu-
facturing system customers with long-term supply contracts have been given high
priority than the other ordinary customers. In multi-specialty hospitals patients
with serious illness are given high priority than the other patients opting for routine
check or else. The real life problems stimulate as to study the queueing-inventory
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systems with two types of customers. Ning Zhao and Zhaotong Lian [11] analyzed
a queueing-inventory system with two classes of customers. The authors have as-
sumed the arrival of the two-types of customers form independent Poisson processes
and exponential service times. Each service uses one item from the attached inven-
tory supplied by an outside supplier with exponentially distributed lead time. Choi
and Chang [7] analyzed single server retrial queues with priority calls. Recently Je-
ganathan et al. [8] analyzed a retrial inventory system with non-preemptive priority
service. The authors have assumed the arrival of the two-types of customers form
independent Poisson processes and exponential service times. Retrial is introduced
for low priority customers only.

In all these models, the authors assumed that an arriving customer should wait
for the delivery of demanded items, as there is a random service time. But in
some real life situations, the customers may accept their demanded items without
any service performed on it. For example, in the case of personal computers, a
unit is usually sold to a customer only after the assembly and installation. But a
technically qualified engineer, may accept the kit of spares direct from the store as
he can assemble it at a later time.

In this article, we investigate a finite-source retrial queueing inventory system
with Erlang k service in which two types of customers, say, high priority and low
priority customers. High priority customers require service on their demanding
unit and low priority customers do not want service or negligible service on their
demanding unit. Retrial is introduced for low priority customers only. The joint
probability distribution of the number of high priority customers in the waiting
area, the number of low priority customers in the orbit and the inventory level is
obtained for the steady state case. Various measures of system performance are
computed in the steady state case.

The rest of the paper is organized as follows. In the next section, the problem
formulation and the notations used in this paper are described. Analysis of the
model and the steady state solutions of the model are proposed in section 3. Some
key system performance measures are derived in section 4. In section 5, we derived
the total expected cost rate. The last section is meant for conclusion.

.2 Problem formulation

Consider an inventory system with a maximum stock of S units and the demands
originated from a finite population of sources M = N1 +N2. Customers arriving at
the service station belong to any one of the two types such that the high priority and
the low priority customers and their arrivals belong to independent quasi-random
distributions with parameters λ1 and λ2 respectively. The high priority customers
require service on their demanded unit and the low priority customers do not want
any service to be performed on their demanded unit. The demand is for single item
per customer. The waiting area is limited to accommodate a maximum number
N1 of high priority customers including the one at service point. Whenever the
server is busy and only one item in the inventory or the inventory level is zero, an
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arriving primary low priority customer enters into an orbit of finite size N2. Each
high priority customer is either free or in the service facility at any time and each
low priority customer is either free or in the orbit at any time.

There are two types of retrial policy considered in the literature of queuing
systems:

1. The probability of a repeated attempt depends on the number of orbiting
demands (classical retrial policy).

2. The probability of a repeated attempt is independent of the number of orbiting
demands (constant retrial policy).

In this article we consider both types of retrial policy (classical retrial policy and
constant retrial policy). More explicitly, when there are j ≥ 1 low priority cus-
tomers in the orbit, a signal is sent out according to an exponential distribution
with parameter θj = α(1 − δj0) + jν when the orbit size is j and δ denotes the
Kronecker delta. Note that the latter type of retrial policy is described as linear
retrial policy. In the special case α = 0 and ν > 0 our model becomes the classical
single-server retrial queuing-inventory system. Alternatively, when ν = 0 and α > 0
our model becomes the constant retrial queueing-inventory system.

Let k be the number of phases in the service station. Assume that the service
time has Erlang-k type distribution with service rate kµ for each phase. After the
lost (kth phase of service) service completed on the item, the item is delivered to
the customer by the server. The life time of each item has negative exponential
distribution with parameter γ > 0. We have assumed that an item of inventory
that makes it into the service process cannot perish while in service. Any arriving
high priority customer, who finds the waiting area full is considered to be lost. It
is also assumed that any arriving primary low priority customer, who finds that
either the server is busy with only one item in the inventory and orbit size is
full or inventory level is zero with no space in the orbit, is considered to be lost.
The reorder level for the commodity is fixed as s and an order is placed when the
inventory level reaches the reorder level s. The ordering quantity for the commodity
is Q(= S − s > s + 1) items. The requirement S − s > s + 1 ensures that after a
replenishment the inventory level will be always above the reorder level. Otherwise
it may not be possible to place reorder which leads to perpetual shortage. The lead
time is assumed to be distributed as negative exponential with parameter β(> 0).
Further, it is assumed that the inter arrival times between high and low priority
customers, intervals between repeated attempts of the retrial times, service time of
high priority customers, the lead times and the life time of each items are mutually
independent random variables.
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2.1 Notations

e : a column vector of appropriate dimension containing all ones

0 : Zero matrix

[A]ij : entry at (i, j)th position of a matrix A

δij :

{
1 if j = i
0 otherwise

δ̄ij : 1− δij

H(x) :

{
1, if x ≥ 0,
0, otherwise.

k ∈ V j
i : k = i, i+ 1, . . . j

M : N1 +N2

2.2 Classification of states

The states of the system are divided into classes as follows:

1. Ea = {Ea0 = (0, 0, i3, i4) | i3 = 0, 1, 2, . . . , N1, i4 = 0, 1, 2, . . . , N2, } where Ea0

is the state in which no items in the inventory (i1 = 0), service has not begin
(i.e., server is idle), number of high priority customers in the waiting area lies
between zero to N1 and number of low priority customers in the orbit lies
between zero to N2.

2. Eb = {Eb0 = (i1, 0, 0, i4) | i1 = 1, 2, . . . , S, i4 = 0, 1, 2, . . . , N2, } where Eb0 is
the state in which i1 items are in the inventory, server is idle (i.e., i2 = 0), no
high priority customers in the waiting area and i4 low priority customers are
in the orbit.

3. Ec = {Ec0 = (i1, i2, i3, i4) | i1 = 1, 2, . . . , S, i2 = 1, 2, . . . , k, i3 = 1, 2, . . . , N1,
i4 = 0, 1, 2, . . . , N2, } where Ec0 is the state in which i1 items are in the
inventory, i2 means that the server is busy with the customer in the i2

th

phase, i3 means the number of high priority customers in the waiting area
and i4 means the number of low priority customers are in the orbit.

.3 Analysis

Let L(t), Y (t), X(t) and Z(t) respectively, denote the inventory level, the server
status, the number of high priority customers in the waiting area and the number
of low priority customers in the orbit at time t.
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Further, server status Y (t) be defined as follows:

Y (t) :



0, if the server is idle at time t,

1, if the server is providing first phase service to a high priority customer

at time t,

2, if the server is providing second phase service to a high priority customer

at time t,
...

...
k, if the server is providing kth phase service to a high priority customer

at time t,

From the assumptions made on the input and output processes, it can be shown
that the stochastic process I(t) = {(L(t), Y (t), X(t), Z(t)), t ≥ 0} is a continuous
time Markov chain with state space given by E = Ea ∪ Eb ∪ Ec.

To determine the infinitesimal generator

Θ = (( d((i1, i2, i3, i4), (j1, j2, j3, j4)) )), (i1, i2, i3, i4), (j1, j2, j3, j4) ∈ E

of this process we use the following arguments :

• We first note that in a Markov process there can be at most one change in the
levels of the state of the process through any one of the activities - arrival
(high priority/low priority), failure of an item, replenishment of stock and
change of phase of service.

• If the server is idle and the inventory level is zero,

– any arriving high priority customer takes the state of the process from
(0, 0, i3, i4) to (0, 0, i3+1, i4) with the intensity of transition d((0, 0, i3, i4),
(0, 0, i3 + 1, i4)) is given by (M − i3 − i4)λ1, i3 = 0, 1, 2, . . . , N1 − 1,
i4 = 0, 1, 2, . . . , N2.

– any arriving primary low priority customer takes the state of the pro-
cess from (0, 0, i3, i4) to (0, 0, i3, i4 + 1) with the intensity of transi-
tion d((0, 0, i3, i4), (0, 0, i3, i4 + 1)) is given by (M − i3 − i4)λ2, i3 =
0, 1, 2, . . . , N1, i4 = 0, 1, 2, . . . , N2 − 1.

• If the server is idle and the inventory level lies between one to S,

– an arrival of high priority customer joins the waiting area and imme-
diately taken for first phase service by the server. The state of the
process from (i1, 0, 0, i4) to (i1, 1, 1, i4) and the intensity of this transi-
tion d((i1, 0, 0, i4), (i1, 1, 1, i4)) is given by (M − i4)λ1, i1 = 1, 2, . . . , S,
i4 = 0, 1, 2, . . . , N2.
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– a transition from state (i1, 0, 0, i4) to state (i1 − 1, 0, 0, i4) takes place
when any one of ”i1” items perishes for which the rate is i1γ or when
a primary low priority customer from any one of the (M − i4) sources
occurs for which the rate is (M − i4)λ2. Hence, the intensity of this
transition is i1γ+ (M − i4)λ2, where i1 = 1, 2, . . . , S, i4 = 0, 1, 2, . . . , N2.

– any arriving retrial customer takes the state of the process from (i1, 0, 0, i4)
to (i1−1, 0, 0, i4−1) and the intensity of this transition d((i1, 0, 0, i4), (i1−
1, 0, 0, i4 − 1)) is given by θi4 = α(1 − δi40) + i4ν, i1 = 1, 2, . . . , S,
i4 = 1, 2, . . . , , N2.

• If the server is busy and the inventory level lies between one to S,

– a transition from (i1, i2, i3, i4) to (i1, i2, i3 + 1, i4) i1 = 1, 2, . . . , S, i2 =
1, 2, . . . , k, i3 = 1, 2, . . . , N1 − 1, i4 = 0, 1, 2, . . . , N2, will take place with
intensity of transition (M − i3 − i4)λ1, when a high priority customer
arrives.

– the arrival of a primary low priority customer enters into the orbit. Hence
a transition takes place from (i1, i2, i3, i4) to (i1, i2, i3, i4 + 1) with in-
tensity (M − i3 − i4)λ2, i1 = 1, i2 = 1, 2, . . . , k, i3 = 1, 2, . . . , , N1,
i4 = 0, 1, 2, . . . , N2 − 1.

– a transition from state (i1, i2, i3, i4) to state (i1 − 1, i2, i3, i4) takes place
when any one of (i1− 1) items perishes for which the rate is (i1− 1)γ or
when a primary low priority customer from any one of the (M − i3− i4)
sources occurs for which the rate is (M − i3− i4)λ2. Hence, the intensity
of this transition is (i1 − 1)γ + (M − i3 − i4)λ2, where i1 = 2, . . . , S,
i2 = 1, 2, . . . , k, i3 = 1, 2, . . . , N1, i4 = 0, 1, 2, . . . , N2 − 1.

– a retrial customer takes the state of the process from (i1, i2, i3, i4) to (i1−
1, i2, i3, i4−1) and the intensity of this transition is θi4 = α(1−δi40)+i4ν,
i1 = 2, . . . , S, i2 = 1, 2, . . . , k, i3 = 1, 2, . . . , N1, i4 = 1, 2, . . . , , N2.

– the completion of any one the i2th phase service for a high priority
customer makes a transition from (i1, i2, i3, i4) to (i1, i2 + 1, i3, i4) with
intensity of transition kµ, i1 = 1, 2, . . . , S, i2 = 1, 2, . . . , k − 1, i3 =
1, 2, . . . , N1, i4 = 1, 2, . . . , , N2.

– a transition from (i1, k, i3, i4) to (i1 − 1, 1, i3 − 1, i4), i1 = 1, 2, . . . , S,
i3 = 1, 2, . . . , N1, i4 = 0, 1, 2, . . . , , N2 with intensity of transition kµ,
when the server completes kth phase service for a high priority customer.

• A passage from (i1, 0, 0, i4) to (i1 + Q, 0, 0, i4), where Q(= S − s), for i1 =
0, 1, 2, . . . , s, i4 = 0, 1, 2, . . . , N2, or from (0, 0, i3, i4) to (Q, 1, i3, i4) for i3 =
1, 2, . . . , N1, i4 = 0, 1, 2, . . . , , N2 or from (i1, i2, i3, i4) to (i1 + Q, i2, i3, i4) for
i1 = 0, 1, 2, . . . , s, i2 = 1, 2, . . . , k, i3 = 1, 2, . . . , N1, i4 = 0, 1, 2, . . . , , N2, will
take place with intensity of transition β when a replenishment for Q items
occurs.
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• For other transition from (i1, i2, i3, i4) to (j1, j2, j3, j4), except (i1, i2, i3, i4) 6=
(j1, j2, j3, j4), the rate is zero.

• Finally, note that

d((i1, i2, i3, i4), (i1, i2, i3, i4)) = −
∑
j1

∑
j2

∑
j3

∑
j4

(j1,j2,j3,j4) 6=(i1,i2,i3,i4)

d((i1, i2, i3, i4), (j1, j2, j3, j4)).

Hence, we have d((i1, i2, i3, i4), (j1, j2, j3, j4)) =

=



β, j1 = Q, j2 = i2, j3 = i3, j4 = i4,

i1 = 0, i2 = 0, i3 = 0, i4 ∈ V N2
0 ,

or

j1 = Q, j2 = 1, j3 = i3, j4 = i4,

i1 = 0, i2 = 0, i3 ∈ V N1
1 , i4 ∈ V N2

0 ,

or

j1 = i1 +Q, j2 = i2, j3 = i3, j4 = i4,

i1 ∈ V s
1 , i2 ∈ V k

0 , i3 ∈ V N1
0 , i4 ∈ V N2

0 ,

i1γ + (M − i4)λ2, j1 = i1 − 1, j2 = i2, j3 = i3, j4 = i4,

i1 ∈ V S
1 , i2 = 0, i3 = 0, i4 ∈ V N2

0 ,

(i1 − 1)γ+ j1 = i1 − 1, j2 = i2, j3 = i3, j4 = i4,

(M − i3 − i4)λ2, i1 ∈ V S
2 , i2 ∈ V k

1 , i3 ∈ V N1
1 , i4 ∈ V N2

0 ,

θi4 , j1 = i1 − 1, j2 = i2, j3 = i3, j4 = i4 − 1,

i1 ∈ V S
1 , i2 = 0, i3 = 0, i4 ∈ V N2

1 ,

or

j1 = i1 − 1, j2 = i2, j3 = i3, j4 = i4 − 1,

i1 ∈ V S
2 , i2 ∈ V k

1 , i3 ∈ V N1
1 , i4 ∈ V N2

1 ,

kµ, j1 = i1 − 1, j2 = 0, j3 = i3 − 1, j4 = i4,

i1 = 1, i2 = k, i3 ∈ V N1
1 , i4 ∈ V N2

0 ,

or

j1 = i1 − 1, j2 = 0, j3 = i3 − 1, j4 = i4,

i1 ∈ V S
2 , i2 = k, i3 = 1, i4 ∈ V N2

0 ,

or

j1 = i1 − 1, j2 = 1, j3 = i3 − 1, j4 = i4,

i1 ∈ V S
2 , i2 = k, i3 ∈ V N1

2 , i4 ∈ V N2
0 ,

or

j1 = i1, j2 = i2 + 1, j3 = i3, j4 = i4,

i1 ∈ V S
1 , i2 ∈ V k−1

1 , i3 ∈ V N1
1 , i4 ∈ V N2

0 ,
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

(M − i3 − i4)λ1, j1 = i1, j2 = i2, j3 = i3 + 1, j4 = i4,

i1 = 0, i2 = 0, i3 ∈ V N1−1
0 , i4 ∈ V N2−1

0 ,

or

j1 = i1, j2 = 1, j3 = 1, j4 = i4,

i1 ∈ V S
1 , i2 = 0, i3 = 0, i4 ∈ V N2

0 ,

or

j1 = i1, j2 = i2, j3 = i3 + 1, j4 = i4,

i1 ∈ V S
1 , i2 ∈ V k

1 , i3 ∈ V N1−1
1 , i4 ∈ V N2

0 ,

(M − i3 − i4)λ2, j1 = i1, j2 = i2, j3 = i3, j4 = i4 + 1,

i1 = 0, i2 = 0, i3 ∈ V N1
0 , i4 ∈ V N2

0 ,

or

j1 = i1, j2 = i2, j3 = i3, j4 = i4 + 1,

i1 = 1, i2 ∈ V k
1 , i3 ∈ V N1

1 , i4 ∈ V N2−1
0 ,

−((M − i3 − i4)× j1 = i1, j2 = i2, j3 = i3, j4 = i4,

(λ1 + δ̄i4N2λ2) + β), i1 = 0, i2 = 0, i3 ∈ V N1
0 , i4 ∈ V N2

0 ,

−((M − i3 − i4)(λ1 + λ2)+ j1 = i1, j2 = i2, j3 = i3, j4 = i4,

H(s− i1)β + i1γ + θi4 + kµ), i1 ∈ V S
1 , i2 = 0, i3 = 0, i4 ∈ V N2

0 ,

−((M − i3 − i4)(δ̄i3N1λ1+ j1 = i1, j2 = i2, j3 = i3, j4 = i4,

λ2) + kµ+H(s− i1)β+ i1 ∈ V S
1 , i2 ∈ V k

1 , i3 ∈ V N1
1 , i4 ∈ V N2

0

(i1 − 1)γ + δ̄i11θi4),

0, Otherwise.

Define the following ordered sets:

< i1, i2, i3 > =


(i1, 0, i3, i4), i1 = 0; i3 = 0, 1, 2, . . . , N1; i3 = 0, 1, 2, . . . , N2;
(i1, 0, 0, i4), i1 = 1, 2, . . . , S; i4 = 0, 1, 2, . . . , N2;
(i1, i2, i3, i4), i1 = 1, 2, . . . , S; i2 = 1, 2, . . . , k; i3 = 1, 2, . . . , N1;

i4 = 0, 1, 2, . . . , N2;

� i1, i2 � =


< i1, 0, i3 >, i1 = 0; i3 = 0, 1, 2, . . . , N1;
< i1, 0, i3 >, i1 = 1, 2, . . . , S; i3 = 0;
< i1, i2, i3 >, i1 = 1, 2, . . . , S; i2 = 1, 2, . . . , k; i3 = 1, 2, . . . , N1

≪ i1 ≫ =

{
� i1, 0,�, i1 = 0, 1, 2, . . . S;
� i1, i2 �, i1 = 1, 2, . . . , S; i2 = 1, 2, . . . , k;

By ordering the sets of state space as (≪ 1 ≫,≪ 2 ≫, . . . ,≪ S ≫), the in-
finitesimal generator Θ can be conveniently expressed in a block partitioned matrix
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with entries

Θi1j1 =


Ai1 j1 = i1, i1 = 0, 1, 2, . . . , S
Bi1 j1 = i1 − 1, i1 = 1, 2, . . . , S − 1, S
C j1 = i1 +Q, i1 = 1, 2, . . . , s,
C1 j1 = i1 +Q, i1 = 0,
0 Otherwise.

More explicitly,

Θ =

S
S − 1

...
s+ 1
s

s− 1
...
1
0



AS BS

AS−1 BS−1
· · ·

· · · As+1 Bs+1

C As Bs

C As−1
· · · · · ·
C · · · A1 B1

C1 A0


where

[C1]i2j2 =


C

(1)
00 j2 = i2, i2 = 0,

C
(1)
01 j2 = 1, i2 = 0,

0, otherwise.

[C
(1)
00 ]i3j3 =

{
W0 j3 = 0, i3 = 0,

0, otherwise.

[C
(1)
01 ]i3j3 =

{
W0 j3 = i3, i3 ∈ V N1

1

0, otherwise.

[W0]i4j4 =

{
β, j4 = i4, i4 ∈ V N2

0

0, otherwise.

[C]i2j2 =


C

(0)
00 j2 = i2, i2 = 0,

C11 j2 = 1, i2 ∈ V k
1

0, otherwise.

[C
(0)
00 ]i3j3 =

{
W0 j3 = 0, i3 = 0,

0, otherwise.

[C11]i3j3 =

{
W0 j3 = i3, i3 ∈ V N1

1

0, otherwise.
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[B1]i2j2 =


B

(1)
00 j2 = i2, i2 = 0,

B
(1)
k0 j2 = 0, i2 = k,

0, otherwise.

[B00
(1)]i3j3 =

{
K1 j3 = i3, i3 = 0,

0, otherwise.

[K1]i4j4 =


(γ + (M − i4)λ2), j4 = i4, i4 ∈ V N2

0

θi4 , j4 = i4 − 1, i4 ∈ V N2
1

0, otherwise.

[Bk0
(1)]i3j3 =

{
F0 j3 = i3 − 1, i3 ∈ V N1

1

0, otherwise.

[F0]i4j4 =

{
kµ, j4 = i4, i4 ∈ V N2

0

0, otherwise.

[Bk0]i3j3 =

{
F0 j3 = 0, i3 = 1,

0, otherwise.

[BK1]i3j3 =

{
F0 j3 = i3 − 1, i3 ∈ V N1

2

0, otherwise.

For i1 = 2, 3, . . . , S

[Bi1 ]i2j2 =



B
(i1)
00 j2 = 0, i2 = 0

Ui1 j2 = i2, i2 ∈ V k
1

B
(i1)
k0 j2 = 0, i2 = k

B
(i1)
k1 j2 = 1, i2 = k

0, otherwise.

[B
(i1)
00 ]i3j3 =

{
Ki1 j3 = i3, i3 = 0

0, otherwise.

[Ki1 ]i4j4 =


(i1γ + (M − i4)λ2), j4 = i4, i4 ∈ V N2

0

θi4 , j4 = i4 − 1, i4 ∈ V N2
1

0, otherwise.

[Ui1 ]i3j3 =

{
Vi1−1,i3 j3 = i3, i3 ∈ V N1

1

0, otherwise.

For i1 = 2, 3, . . . , S, i3 = 1, 2, 3, . . . , N1
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[Vi1−1,i3 ]i4j4 =


(i1 − 1)γ + (M − i3 − i4)λ2, j4 = i4, i4 ∈ V N2

0

θi4 , j4 = i4 − 1, i4 ∈ V N2
1

0, otherwise.

[A0]i2j2 =

{
A

(0)
00 j2 = 0, i2 = 0,

0, otherwise.

[A
(0)
00 ]i3j3 =


Gi3 j3 = i3 + 1, i3 ∈ V N1−1

0

Hi3 j3 = i3, i3 ∈ V N1
0 ,

0, otherwise.

For i3 = 0, 1, 2, . . . , N1 − 1

[Gi3 ]i4j4 =

{
(M − i3 − i4)λ1 j4 = i4, i4 ∈ V N2

0 ,

0, otherwise.

For i3 = 0, 1, 2, . . . , N1

[Hi3 ]i4j4 =


(M − i3 − i4)λ2 j4 = i4 + 1, i4 ∈ V N2−1

0 ,

−((M − i3 − i4)(λ1 + δ̄i4N2 + β) j4 = i4, i4 ∈ V N2
0 ,

0, otherwise.

[A1]i2j2 =



A
(1)
00 j2 = 0, i2 = 0,

A00 j2 = 1, i2 = 0,

L0 j2 = i2, i2 ∈ V k
1 ,

E0 j2 = i2 + 1, i2 ∈ V k−1
1 ,

0, otherwise.

[A00]i3j3 =

{
G0 j3 = 1, i3 = 0,

0, otherwise.

[J0]i4j4 =


−((M − i3 − i4)(λ1 + λ2)+

γ + θi4 + β), j4 = i4, i4 ∈ V N2
0 ,

0, otherwise.

[L0]i3j3 =


Gi3 j3 = i3 + 1, i3 ∈ V N1−1

1 ,

D1,i3 j3 = i3, i3 ∈ V N1−1
1 ,

D j3 = i3, i3 = N1,

0, otherwise.

[D1,i3 ]i4j4 =


−((M − i3 − i4)(δ̄i3N1λ1 + δ̄i4N2λ2)+

kµ) j4 = i4, i4 ∈ V N2
0 ,

(M − i3 − i4)(δ̄i4N2λ2) j4 = i4 + 1, i4 ∈ V N2−1
0 ,

0, otherwise.

[D]i4i4 =


(M − i3 − i4)(δ̄i4N2λ2) j4 = i4 + 1, i4 ∈ V N2−1

0 ,

−((M − i3 − i4)δ̄i4N2λ2+

kµ+ β), j4 = i4, i4 ∈ V N2
0 ,

0, otherwise.
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For i1 = 2, 3, . . . , S

[Ai1 ]i2j2 =



A00 j2 = 0, i2 = 0,

Li1 j2 = i2, i2 = 0,

L(i1−1) j2 = i2, i2 ∈ V k
1 ,

E0 j2 = i2 + 1, i2 ∈ V k−1
1 ,

0, otherwise.

[Li1 ]i3j3 =

{
Ji1 j3 = i3, i3 = 0,

0, otherwise.

[Ji1 ]i4j4 =


−((M − i3 − i4)(λ1 + λ2) + i1γ+

+θi4 +H(s− i1)β) j4 = i4, i4 ∈ V N2
0 ,

0, otherwise.

[L(i1−1)]i3j3
=


Gi3 j3 = i3 + 1, i3 ∈ V N1−1

0 ,

R(i1−1,i3) j3 = i3, i3 ∈ V N1
1 ,

0, otherwise.

For i3 = 1, 2, 3, . . . , N1,

[R(i1−1,i3)]i4i4
=


−(M − i3 − i4)(δ̄i3N1λ1 + λ2)+

θi4 + kµ+H(s− i1)β), j4 = i4, i4 ∈ V N2
0 ,

0, otherwise.

It can be noted that Ai1 , Bi1 , i1 = 2, . . . , S, A1, and C are square matrices
of order (N2 + 1)(kN1 + 1). C1 is of size (N1 + 1)(N2 + 1) × (N2 + 1)(kN1 +
1), A0 and A0

00 are square matrices of order (N1 + 1)(N2 + 1), B1 is of size
(N2 + 1)(kN1 + 1) × (N1 + 1)(N2 + 1). The sub matrices C1

00, W0, C
0
00, K1, Ki1 ,

B
(i1)
00 , i1 = 1, 2, . . . , S, Vi1−1,i3 , i3 = 1, 2, . . . , N1, Gi1 , i3 = 0, 1, 2, . . . , N1−1, Hi3 , i3 =

0, 1, 2, . . . , N1, A
1
00, J0, D1,i3 , i3 = 0, 1, 2, . . . , N1 − 1, D, Li1 , S, Ji1 , R(i1−1,i3), i1 =

2, 3, . . . , S, i3 = 0, 1, 2, . . . , N1 are square matrices of order (N2 + 1). C11, Ui1 , B
(i1)
k1 ,

L(i1−1), i1 = 2, 3, . . . , S, E0, L0, are square matrices of order N1(N2 + 1). C
(1)
01 , B

(1)
k0 ,

B
(i1)
k0 , i1 = 2, 3, . . . , S, and A00 are matrices of order (N1 + 1)(N2 + 1)×N1(N2 + 1),

N1(N2 + 1)× (N1 + 1)(N2 + 1), N1(N2 + 1)× (N2 + 1) and (N2 + 1)×N1(N2 + 1)
respectively.

3.1 Steady State Analysis

It can be seen from the structure of Θ that the homogeneous Markov process
{(L(t), Y (t), X(t), Z(t)) : t ≥ 0} on the finite space E is irreducible, aperiodic and
persistent non-null. Hence the limiting distribution

φ(i1,i2,i3,i4) = lim
t→∞

Pr[L(t)= i1, Y (t)= i2, X(t)= i3, Z(t)= i4|L(0), Y (0), X(0), Z(0)]

exists.
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Let Φ denote the steady state probability vector of the generator Θ. The vector,
Φ, partitioned as Φ = (Φ(0),Φ(1), . . . ,Φ(S)), where

Φ(0) = (Φ(0,0)), Φ(i1) = (Φ(i1,0),Φ(i1,1), . . . ,Φ(i1,k)), i1 = 1, 2, 3, . . . , S;

which is partitioned as follows:

Φ(0,0) = (φ(0,0,0), φ(0,0,1), . . . , φ(0,0,N1)),

Φ(i1,0) = (φ(i1,0,0)), i1 = 1, 2, 3, . . . , S;

Φ(i1,i2) = (φ(i1,i2,1), φ(i1,i2,2), . . . , φ(i1,i2,N1)), i1 = 1, 2, 3, . . . , S; i2 = 1, 2, . . . k,

Further the above vectors also partitioned as follows:

Φ(0,0,i3) = (φ(0,0,i3,0), φ(0,0,i3,1), . . . , φ(0,0,i3,N2)), i3 = 0, 1, 2, 3, . . . , N1;

Φ(i1,0,0) = (φ(i1,0,0,0), φ(i1,0,0,1), . . . , φ(i1,0,0,N2)), i1 = 1, 2, 3, . . . , S;

Φ(i1,i2,i3) = (φ(i1,i2,i3,0), φ(i1,i2,i3,1), . . . , φ(i1,i2,i3,N2)), i1 = 1, 2, . . . , S;

i2 = 1, 2, . . . , k; i3 = 0, 1, . . . , N1;

The computation of steady state probability vector Φ = (Φ(0),Φ(1), . . . ,Φ(S)), by
solving the following set of equations

Φi1Bi1 + Φi1−1Ai1−1 = 0, i1 = 1, 2, . . . , Q,

Φi1Bi1 + Φi1−1Ai1−1 + Φ(i1−1−Q)C1 = 0, i1 = Q+ 1,

Φi1Bi1 + Φi1−1Ai1−1 + Φ(i1−1−Q)C = 0, i1 = Q+ 2, Q+ 3, . . . , S,

ΦSAS + ΦsC = 0,

subject to conditions ΦΘ = 0 and
∑∑∑

(i1,i2,i3)
φ(i1,i2,i3) = 1.

This is done by the following algorithm.

Step 1. Solve the following system of equations to find the value of ΦQ

ΦQ

[{
(−1)Q

s−1∑
j=0

[(
s+1−j

Ω
k=Q

BkA
−1
k−1

)
CA−1S−j

(
Q+2

Ω
l=S−j

BlA
−1
l−1

)]}
BQ+1

+AQ +

{
(−1)Q

1

Ω
j=Q

BjA
−1
j−1

}
C

]
= 0,

and

ΦQ

[
Q−1∑
i1=0

(
(−1)Q−i1

i1+1

Ω
j=Q

BjA
−1
j−1

)
+ I

+
S∑

i1=Q+1

(
(−1)2Q−i1+1

S−i1∑
j=0

[(
s+1−j

Ω
k=Q

BkA
−1
k−1

)
CA−1S−j

(
i1+1

Ω
l=S−j

BlA
−1
l−1

)])]
e = 1.
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Step 2. Compute the values of

Ωi1 = (−1)Q−i1ΦQ
i1+1

Ω
j=Q

BjA
−1
j−1, i1 = Q− 1, Q− 2, . . . , 0

= (−1)2Q−i1+1ΦQ
S−i1∑
j=0

[(
s+1−j

Ω
k=Q

BkA
−1
k−1

)
CA−1S−j

(
i1+1

Ω
l=S−j

BlA
−1
l−1

)]
,

i1 = S, S − 1, . . . , Q+ 1
= I, i1 = Q

Step 3. Using Φ(Q) and Ωi1 , i1 = 0, 1, . . . , S, calculate the value of Φ(i1), i1 =
0, 1, . . . , S. That is,

Φ(i1) = Φ(Q)Ωi1 , i1 = 0, 1, . . . , S.

.4 System performance measures

In this section, we derive some measures of system performance in the steady state.
Using this, we calculate the total expected cost rate.

4.1 Expected Inventory Level

Let ηI denote the excepted inventory level in the steady state. Since Φ(i1) is the
steady state probability vector that there are i1 items in the inventory with each
component represents a particular combination of the number of high priority cus-
tomers in the waiting hall, number of low priority customers in the orbit and the
status of the server, Φ(i1)e gives the probability of i1 item in the inventory in the
steady state. Hence ηI is given by

ηI =
S∑

i1=1

i1Φ
(i1)e.

4.2 Expected Reorder Rate

Let ηR denote the expected reorder rate in the steady state. A reorder is placed
when the inventory level drops from s + 1 to s. This may occur in the following
two cases:

• an arrival of a low priority customer,

• an arrival of a orbit customer,

• the server completes a service for the high priority customer,

• any one of the s items fails when the server is busy,
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• any one of the (s+ 1) items fails when the server is idle.

Hence we get

ηR = ((M − i4)λ2 + (s+ 1)γ + θi4)

N2∑
i4=0

φ(s+1,0,0,i4) +

((M − i3 − i4)λ2 + sγ + θi4)
k−1∑
i2=1

N1∑
i3=1

N2∑
i4=0

φ(s+1,0,0,i4) +

((M − i3 − i4)λ2 + sγ + θi4 + kµ)

N1∑
i3=1

N2∑
i4=0

φ(s+1,k,i3,i4).

4.3 Expected Perishable Rate

Since Φ(i1) is the steady state probability vector for inventory level, the expected
perishable rate ηP is given by

ηP =
S∑

i1=1

N2∑
i4=0

i1γφ
(i1,0,0,i4) +

S∑
i1=1

k∑
i2=1

N1∑
i3=1

N2∑
i4=0

(i1 − 1)γφ(i1,i2,i3,i4).

4.4 Expected Number of High Priority Customers in the Waiting

Area

Let Γ1 denote the expected number of high priority customers in the steady state.
Since φ(i1,i2,i3,i4) is a vector of probabilities with the inventory level is i1, the server
status is i2, the number of high priority customers in the waiting area is i3 and the
number of low priority customers in the orbit is i4, the expected number of high
priority customers Γ1 in the steady state is given by

Γ1 =

N1∑
i3=1

N2∑
i4=0

i3φ
(0,0,i3,i4) +

S∑
i1=1

k∑
i2=1

N1∑
i3=1

N2∑
i4=0

i3φ
(i1,i2,i3,i4).

4.5 Expected Waiting Time

Let ηW denote the expected waiting time of the high priority customers in the
waiting area. Then by Little’s formula

ηW =
Γ1

ηAH

,

where Γ1 is the expected number of high priority customers in the waiting area and
the effective arrival rate of the high priority customer (Ross [14]), ηAH is given by

ηAH =

N1−1∑
i3=0

N2∑
i4=0

(M − i3 − i4)λ1φ(0,0,i3,i4) +
S∑

i1=1

N2∑
i4=0

(M − i4)λ1φ(i1,0,0,i4)

+
S∑

i1=1

k∑
i2=1

N1−1∑
i3=1

N2∑
i4=0

(M − i3 − i4)λ1φ(i1,i2,i3,i4).
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4.6 Expected Number of Low Priority Customers in the Orbit

Let Γ2 denote the expected number of low priority customers in the steady state.
Since φ(i1,i2,i3,i4) is a vector of probabilities with the inventory level is i1, the server
status is i2, the number of high priority customers in the waiting area is i3 and the
number of low priority customers in the orbit is i4, the expected number of low
priority customers Γ2 in the steady state is given by

Γ2 =

N1∑
i3=0

N2∑
i4=1

i4φ
(0,0,i3,i4) +

S∑
i1=1

N2∑
i4=1

i4φ
(i1,0,0,i4) +

S∑
i1=1

k∑
i2=1

N1∑
i3=1

N2∑
i4=1

i4φ
(i1,i2,i3,i4).

4.7 Expected Number of High Priority Customers Lost

Let ηHL denote the expected number of high priority customers lost to the system
in the steady state. Any arriving high priority customer finds the waiting area is
full and leaves the system without getting service. These customers are considered
to be lost. Thus we obtain

ηHL =

N2∑
i4=0

(M −N1 − i4)λ1φ(0,0,N1,i4) +
S∑

i1=1

k∑
i2=1

N2∑
i4=0

(M −N1 − i4)λ1φ(i1,i2,N1,i4).

4.8 Expected Number of Low Priority Customers Lost

Let ηLL denote the expected number of low priority customers lost to the system in
the steady state. Any arriving low priority customer finds the orbit size is full when
either inventory level is zero or server is busy while only one item in the inventory
and leaves the system not entering the orbit. These customers are considered to be
lost. Thus we obtain

ηLL =

N1∑
i3=0

(M − i3 −N2)λ2φ
(0,0,i3,N2) +

k∑
i2=1

N1∑
i3=1

(M − i3 −N2)λ2φ
(1,i2,i3,N2).

4.9 Probability that Server is Busy with a High Priority Customer

Let ηPH denote the probability that server is busy with a high priority customer is
given by

ηPH =
S∑

i1=1

k∑
i2=1

N1∑
i3=1

N2∑
i4=0

φ(i1,i2,i3,i4).

4.10 Probability that Server is Idle

Let ηPI denote the probability that server is idle is given by

ηPI =

N1∑
i3=0

N2∑
i4=0

φ(0,0,i3,i4) +
S∑

i1=1

N2∑
i4=0

φ(i1,0,0,i4).
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4.11 The Overall Rate of Retrials

Let ηOR denote the overall rate of retrials in the steady state. Then we have

ηOR =

N1∑
i3=0

N2∑
i4=1

θi4φ
(0,0,i3,i4) +

S∑
i1=1

N2∑
i4=1

θi4φ
(i1,0,0,i4) +

S∑
i1=1

k∑
i2=1

N1∑
i3=1

N2∑
i4=1

θi4φ
(i1,i2,i3,i4).

4.12 The Successful Retrial Rate

Let ηSR denote the successful retrial rate in the steady state . Then

ηSR =
S∑

i1=1

N2∑
i4=1

θi4φ
(i1,0,0,i4) +

S∑
i1=2

k∑
i2=1

N1∑
i3=1

N2∑
i4=1

θi4φ
(i1,i2,i3,i4).

4.13 The Fraction of Successful Rate of Retrial

Let ηFR denote the fraction of successful retrial rate in the steady state . Then

ηFR =
ηSR
ηOR

.

.5 Expected Total Cost Rate

To compute the total expected cost per unit time (total expected cost rate), the
following costs, are considered.

ch : The inventory carrying cost per unit item per unit time
cs : Setup cost per order
cp : Perishable cost per unit item per unit time
cbh : Cost per high priority customer lost
cbl : Cost per low priority customer lost
cwh : Waiting cost of a high priority customer per unit time
cwl : Waiting cost of a low priority customer per unit time

The long run total expected cost rate is given by

TC(S, s,N1, N2) = chηI + csηR + cpηP + chηw + clΓ2 + chlηHL + cllηLL,

where η′s are as given in Sections 4.1-4.8.

.6 Concluding Remarks

In this article, we analyzed a continuous review stochastic retrial queueing-inventory
system with two types of customers, (s, S) replenishment policy and finite popu-
lation. Retrial is introduced for low priority customers only. The lead times of
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reorder, service times and the retrial demand time points form independent ex-
ponential distributions. The model is analyzed within the framework of Markov
processes. Joint probability distribution of the number of customers in the waiting
area, the number of customers in the orbit and the inventory level is obtained in the
steady state. Various system performance measures are derived and the long-run
total expected cost rate is derived. The authors are working in the direction of
MAP (Markovian arrival process) arrival for the two types of customers and service
times follow PH-distributions.

Acknowledgements. The author wishes to thank the anonymous referee who has
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