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Abstract. We study electron localization and tunneling in double quantum dots
(DQD) and rings (DQR). The wave function of a single electron may be localized
in one of the QDs or be delocalized when is spread over the whole system. Spectral
distributions of such states are considered. Electron transition between both states
is possible if inter-dot distance or QD (QR) geometry is varied. The effect of
violation of symmetry of DQDs geometry on the tunneling is studied in details.
We show that a small violation of symmetry drastically affects localization of
electron. The same symmetry violation effect happens if an electrical or magnetic
field are applied. We consider anti-crossing of the levels as the mechanism of the
tunneling between the localized and delocalized states.
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.1 Introduction

Semiconductor heterostructures, such as quantum dots and rings are, due to their
unique properties, of potential interest for development of new nano-devices [1, 2].
Some of these properties are related to the electron tunneling that occurs between
the nano-sized systems. Here we will consider tunneling between double quantum
dots (DQDs) and will show that the electron localized-delocalized states and the
tunneling are highly sensitive on the violation of the geometrical symmetry of the
DQD system. Generally, the relation between tunneling and chaos is an inalienable
phenomenon in the meso- and nano world. Technology itself with its imperfection
of shapes of quantum dots (QDs) and quantum rings (QRs) provides the chaotic
behavior in the QD and QR, which has a strong influence on the charge transport
and other properties [2]. The problem of quantum chaos in these objects has a
relatively long history, just since it entered science and technology [3, 4, 5, 6, 7, 8]
(for recent review see [9]). One of the main results of these studies is that chaotic
phenomena sensitively depend on geometry and, first of all, on the symmetry of
these objects. The second fundamental phenomenon characterizing the behaviour of
these confined objects is the tunneling which expresses of the matter wave structure
of quantum mechanics. The tunneling is well known from textbooks and best
illustrated by an example of the barrier penetration in a double well potential
[10, 11]. However, in the general sense, as applied to the confined nano-objects,
tunneling is a dynamical by nature, and not a direct result of the existence of the
potential barrier, it is the property of the wave function of the whole system [12].
The main feature of this so called dynamical tunneling is for example the energy
barrier splitting of the degenerate pairs of level, when the coupling between objects
due to their common wave function results in the forming two nearly degenerate
eigenstates, which are the linear combinations of the wave functions of the isolated
objects [13, 14]. In the present paper we consider the situation motivated by the
experimental data for semiconductor InAs/GaAs QDs and QRs, and one of the goals
of the present study is the above mentioned important phenomena, as applied to
the isolated system of QDs (and QRs). As a result, we show that a small symmetry
violation in DQDs may significantly reduce electron transport through the system.

.2 Model

We consider isolated quantum dots and rings composed of InGaAs in a GaAs sub-
strate. This heterostructure is modeled utilizing a kp-perturbation single sub-band
approach [15]. The problem is mathematically formulated by the Schrödinger equa-
tion in two (three) dimensions:(

Ĥkp + Vc (r) + Vs (r)
)

Ψ (r) = EΨ (r) . (1)

Here Ĥkp is the single band kp-Hamiltonian operator Ĥkp = −∇ ~2
2m∗∇, m∗=m∗ (r)

is the electron effective mass which depends on the position of the electron, and
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Vc (r) is the band gap potential. Vc (r) = 0 inside the QD (QR), and is equal to Vc
outside the QD (QR), where Vc is defined by the conduction band offset for the bulk.
The band gap potential for the conduction band was chosen as Vc=0.594 eV. Bulk
effective masses of InAs and GaAs are m∗

1=0.024m0 and m∗
2=0.067m0, respectively,

where m0 is the free electron mass. Vs (r) is the effective potential simulating the
strain effect, it has an attractive character and acts inside the volume of the QD [15].
The magnitude of the potential can be chosen to reproduce experimental data. For
example, the magnitude of Vs for the conduction band chosen in Ref. [16] is 0.21 eV.
This value was obtained to reproduce results of the 8-th band kp-calculations of
Ref. [17] for InAs/GaAs QD. The BenDaniel-Duke boundary conditions [18] are
used on the interface of the material of QD and substrate.

One can separate the angle variable for case when shape of the QDs (QRs) has
rotation symmetry. In polar coordinates the wave function is represented as

Ψn,l (ρ, ϕ) = Φn,l (ρ) eilϕ,

where n = 1, 2, 3... are radial and l = ±0,± 1,± 2, ... are orbital quantum numbers.

Figure 1: 2D circle shaped double quantum dot.

To describe the tunneling of a single electron in doublet quantum objects we
make the following definitions. Probability of localization of electron into region Ωγ

(γ=1,2) is defined as Nk,γ =
∫∫

Ωγ
|Φk (x, y) |2dxdy, where Φk (ρ, z) is wave function

of electron, k = 1, 2, . . . enumerates the levels in the spectrum. Ωγ (γ=1,2) corre-

sponds to the QD shape. Let us define a tunneling measure parameter σ =
Nk,1−Nk,2
Nk,1+Nk,2

,

with the range [-1,1]. Obviously, when σ = 0, the electron will be in QD1 (Ω1) or in
QD2 (Ω2) with equal probability (here we assume, that the QD1 and QD2 have the
same shape). We will call this electron state the delocalized state of the electron
in the double QDs system. The case σ = 1 (or σ = −1) corresponds to the strong
localization of single election in QD1 (or QD2).

.3 Identical QDs

The circle shaped InAs/GaAs dots compose the double quantum system. The
DQD is considered as two dimensional (2D). The schematic of the system is given
in Fig. 1. The inter-dot distance a is changed in this study.
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Visualization for the dynamical tunneling is given in Fig. 2 where the parameter
σ is presented along the energies of the single electron spectrum in the InAs/GaAs
DQD for different inter-dot distances. When the distance between the objects
is large, the electron is localized in one of the objects σ ≈ 1 (σ ≈ −1), when
the distance decreases, the electron is tunneling and its wave function is spread
over the whole double system, σ ≈ 0. The situation when all states are tunneled
states occurs for the inter-dot distances less than 15 nm. There are no tunneled
states when a is larger than 40 nm. One can see in Fig. 2 that σ = 0 for a
system that is symmetric relative to the axis, there are quasi quadruplets or quasi
doublets of the DQD spectrum. The spectrum has degeneracy order of two for each
level when the QDs are independent. This degeneracy follows from the rotation
symmetry of each QDs. Energy of the states can be approximated by the relation:
En,l∼~2/2m∗(n+ |l|), where n and l are radial and orbital quantum numbers. The
states with σ between |σ| = 1 and σ ≈ 0 are delocalized states. The example of
wave functions of such states is shown in Fig. 3.

Figure 2: The parameter sigma for the confinement single electron states energies for

InAs/GaAs DQD. Inter-dot distances a are a) 14 nm and 40 nm; b) 22 nm.

One can see that the two quasi doublets create the quadruplet, shown in left and
right part of Fig. 3 (fig. 3 a),c) and b)d), respectively). In each quasi doublet
the wave function has to be a symmetric ΨA or anti-symmetric ΨS w.r.t. the
permutation of the left and right QDs. These quasi-doublets differ by the symmetry
of the wave functions. The wave functions of the right side of Fig. 3 are “even”
whereas the states of the left side are “odd”. It can be described by an expansion
of the sin or cos functions. The difference of the phase components of these wave
functions can also be observed as a relative rotation for an angle ϑ = π/2l. One
can see that the wave functions of the quasi-doublet, Fig. 3 left, have different
amplitudes for left and right QDs. Also, the wave functions have an additional
rotation shift for small angles ϕ and −ϕ relative to the “regular” position (see Fig.
3 b,d).

In the weak coupling state of the quasi-doublet, the wave function may be given
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by the form [19]:

ΨA ≈ −e−iϕ W

2∆E
ψL + ψR,

ΨS ≈ ψL + eiϕ
W

2∆E
ψR. (2)

in the first order of W
∆E

<< 1, where W ≈ 0 and ∆E ≈ 0. Here, W is a coupling
coefficient depending on overlapping of the wave functions of ”unperturbed states”
ψL and ψR of the left (L) and right (R) quantum dots. ∆E = EA − ES is energy
difference of the quasi-doublet.

One can explain the values of σ, with the condition 0 < |σ| < 1 by Eq. (2).
The levels located between states which are strongly tunneled (delocalized) and the
states with no tunneling (localized) have values of σ as showed in Fig. 2. According
to Eq. (2) the amplitudes of the wave function components corresponding to the
left and right QDs differ for the factor W

∆E
. The wave function components with

smaller amplitudes have additional phase shift ±ϕ. This situation is presented in
Fig. 3a) and c).

It has to be noted that the numerical calculations for such states meet principal
difficulties due to the necessity of numerical treatment of the uncertainty of the
type 0/0 in Eq. (2) for the value W/∆E. Generally one can say that for identical
QDs the tunneling goes consecutively from high energy levels to the ground state
when the inter-dot distance is decreasing. Summarizing, we can mark the three
parts of the spectrum: separated QDs part (localized levels), weak coupling part,
and the strong coupling part (delocalized levels). Each level with l 6=0 is a member
of a quasi-quadruplet including two quasi doublets. The wave function components
of the quasi-doublet can be distinguish by phase and amplitude for left and right
QDs.

In Fig. 3, all levels of the spectrum are delocalized levels for the inter-dot
distances of a <15 nm. The wave function of the electron is spread over whole DQD
for each electron state. The quasi-doublet energy splitting ∆E can be described
using the following relation (the consideration for one dimensional DQD one can
find in [11]):

∆E ∼
∑∫

ψL(x, y)V (x, y)ψR(x, y)dxdy, (3)

where V (x, y) is the confinement potential in the left or the right QD. The sum
means a sum for two QDs. Here we assume that these wave functions were normal-
ized. In considering quantum rings system, the result of this integration depends
on an overlapping of the wave functions. This overlapping depends on the distance
between quantum rings and spreading of the single wave function over the DQD
geometry region. The last feature of the relation of Eq. (3) explains the spectral
property of the dynamical tunneling mentioned above. The upper levels of the
spectrum have more spaced wave functions. The value of the integral (3) is larger
for the upper levels in comparison with one for the low-lying levels.
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Figure 3: The wave functions of quasi quadruplet state with energy of 0.313956 eV. The

inter-dot distance is a=15 nm. Two quasi doublets create this quadruplet (shown by

number 1,3 and 2,4)

Figure 4: a) Parameter σ for different coefficient of asymmetry in DQD with R1=40 nm

and R2 = ξR1 for a=3 nm. b) Density functions of the σ parameter for different ξ.

.4 Non-identical QDs

Let us consider non-identical DQDs. Note that the similar consideration has been
done in Ref. [14] for a micro-disk. We take initial radii of the QDs 40 nm. The
size of one of the QDs (right QD) is gradually decreased. The inter-dot distance
was kept with the value of 3 nm. The effect of non-identicalness on the tunneling
parameter is seen in Fig. 4a). We used ratio ξ = R2/R1 of the radii of the QDs for
defining the non-identicalness.
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The cases ξ = 1, ξ = 0.9975 and ξ = 0.9875 are compared in Fig. 4 a).
One can see that when ξ = 1 the wave function is distributed uniformly between
QDs, when ξ = 0.9975 there are few states of single electron whose wave functions
are well localized in the left or right QDs. For ξ = 0.9875 all states have strong
localization in the left or right QDs. The efficiency of tunneling depends on the ratio
of asymmetry of QDs shapes. The larger asymmetry gives larger number of non-
tunneled states. It is important to note that the small violation of the QD symmetry
drastically affects the tunneling. In Fig. 4b) the last result is presented using the
density functions D(σ) of σ shown for various ξ. The function D(σ) is defined as
a probability density for the variable σ to have a value σ with the normalization∫
D(σ)dσ = 1. We see that the separation of the electron spectral states between

two cases – “independent QDs” (no tunneling states) and ”completely coupled QD”
occurs for ξ in vicinity of 1.

One more illustration for the effect is given in Fig. 5 where we show the effect
of the DQD asymmetry, when the DQs are separated by relatively large distance
a=10 nm. All states of the DQD are tunneling states for identical QDs for that
distance. The tunneling of the system drastically decreases with small variations
of the right QD radius.

Figure 5: The σ-parameter for the asymmetric DQD with a=10 nm for several values

of the asymmetry parameter ξ = R2/R1 (R1=40 nm): a) ξ=0.99975 ; b) ξ=0.999975. c)

ξ=0.9999975. d) ξ=0.99999875. The corresponding values of R2 are shown in the figures.

For all cases, the relative deference of QD shape square areas is less than 0.05%.
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In Fig. 6 and Fig. 7 the dependence of the tunneling on inter-dot distance is
demonstrated. In Fig. 6 the violation of the symmetry of this DQD system, defined
by ξ, is 0.9975. Comparing the cases of symmetric (see Fig. 2) and non-symmetric
DQD tunneling one can see that for symmetric case all states in the spectrum are
delocalized, when the distances decrease from a=10 nm to a=0. In the case of
non-symmetric DQD there are some localized states for any a up to a=0.

Note also that the inter-dot distance value, for which all states of the DQD spec-
trum are tunneled, essentially depends on value of ξ. For non-symmetric DQD this
inter-dot distance decreases to a few nm while for the identical QDs this distance
is about 10 nm. Thus, we can conclude that a violation of symmetry of the DQD
geometry reduces the tunneling.

Figure 6: The σ-parameter for the asymmetric DQDs with R1=40 nm and R2=39.9 nm,

for different inter-dot distances a.

An additional illustration for this conclusion is presented in Fig. 7, where we
compare the tunneling for two cases: small (with ξ=0.9975) and relatively large
(with ξ=0.875) asymmetry in DQDs. Obviously, number of the delocalized levels
(and the tunneling) is larger for the case of small asymmetry.

.5 InAs/GaAs DQD in 3D

In this section we consider the DQDs with the geometry motivated by the experi-
mental data. The reported geometry parameters for QD in [1] have the value about
20 nm for QDs diameter and the value of 9 nm for QDs height. The cross section
of the DQDs shape is shown in Fig. 8a (see also [20]).

First, we consider the case of identical QDs in DQDs. The value of QDs diam-
eter was chosen to be larger that the reported in [1]. To have a large number of
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Figure 7: Density function of σ for different inter-dot distances a for the asymmetric

DQDs with a) R1=40 nm and R2=39.9 nm and b) R1=40 nm (ξ=0.9975) and R2=35.0 nm

(ξ=0.875). Dashed line - a=3 nm; dot-dashed line - a=2 nm; solid line - a=1 nm; doted

line -a=0 nm.

confinement states (about one hundred), we increased the QDs size. The results of
the calculations are presented in Fig. 8b).

Figure 8: a) Cross section of 3D semi-ellipsoidal shaped DQDs. b) σ-parameter for

3D InGaAs/GaAs DQDs with R1=R2=20 nm calculated for energies of single electron

spectrum for different inter-dot distances a (shown in the figure).

These results are qualitatively the same as ones obtained for 2D QD in previous
section: if we make the QDs closer, then the tunneling involves consequently the
levels from the higher to the lower. The tunneling of high levels begins at 24 nm.
The system becomes completely delocalized when the inter-dot distance is about
4 nm. The 3D and 2D DQDs systems are different in the respect that the distances
for the 3D DQDs at which the full tunneling occurs are shorter. For these examples
the difference is larger four times: from the value of 16 nm for 2D DQD to the one
of 4 nm for 3D DQD.

This effect could be expanded by including into account the case of non-identical
QDs in DQDs. We have chosen for the left QD radius 20 nm and the right QD
radius about 19 nm (ξ=0.95). We changed only the size area of basis of the QD
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shape. The heights of the QD ware not changed. Difference of the volumes is about
10% (ξ2=0.9). For the situation when the inter-dot distance decreases to zero we
found that in this DQD system the tunneling is never over the whole system (if
QDs do not penetrate one into another). Comparing regular DQDs and asymmetric
DQDs considered above one can conclude again that a violation of the symmetry
in DQDs leads to reduction of the tunneling.

.6 Lateral double quantum rings with concentric symmetry

violation

Let us consider the laterally arranged DQRs, likewise DQDs considered above. The
DQRs of such type are shown in Fig. 9 (left). Here, ∆x is the shift of inner circle
in upper QR that breaks concentric symmetry of this ring. This case is interesting
since the symmetry of this double quantum object could be violated without the
QR shape volume change. Note that the upper QR is shaped like ”chaotic Bohigas
billiard” [21].

Energy of a single electron in ”regular” QR is related through the following
relation to the radial n and orbital quantum number l:

En,l∼~2/2m∗(n2/W 2 + l2/R2),

where W<<R and W is the width and R is radius of the QR. One may use for R the
value (rin + rout)/2, where rin and rout are radii of inner and outer boundary circles
of QR. The single electron levels in QR are separated by the bands n=1,2,3 . . . ,
and in-band states by |l |=0,1,2. . . . Since W<<R, the density function D(E) of
the electron energy spectrum has local maximums for the beginning of each n-band
n =1,2,3,. . . . The maximums are presented in Fig. 9a) for the regular case ∆x=0.
The tunneling spectral distribution is similar to that of the DQDs; the number of
the delocalized states consecutively decreases from the threshold of the continuous
spectrum. The violation of the symmetry occurs when the eccentricity ∆x 6=0. The
upper ring (QR2) becomes ”chaotic” [22]. The spectrum of the QR is splitted into
the n-bands as it is shown in Fig. 10.

For large orbital numbers l the wave functions of the electron are localized in
the area corresponding to the regular ring, which outer boundary is given in Fig. 10
by red circle. These electron states build so called ”whispering gallery” [21] (shown
by red filled circles in Fig. 10 for n=1). The wave functions of these sates in chaotic
QR are similar (asymptotically for large l) to the ones in regular QR with radius
slightly bigger than one in ”non-disturbed” initial QR. This situation is shown by
red circle in Fig. 10 inset. Using these definitions we can clarify Fig. 9b)-d). The
delocalized tunneling between chaotic QR (QR2) and regular QR (QR1) is possible
through the gallery states of QR2 with the same orbital number l. The number
is larger than the number lwg that corresponds to the ”gallery”, when the spectral
levels become the ”gallery” states. The non-gallery states have no ”good” orbital
quantum number and the tunneling between QR1 and QR2 is suppressed. We
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Figure 9: (left) The laterally disposed QRs in DQR. ∆x is the shift of inner circle in

upper QR. (right) σ-parameter and density function D(E) of energy levels along the DQR

spectrum.

can see in Fig. 9b)-c) that the delocalized states are appearing at large l, for the
states with the radial numbers n=1,2. The tunneling is also suppressed when ∆x
became large enough, as it is shown in Fig. 9d). This situation can be explained
by a shifting the ”gallery” states to the continue spectrum threshold when the
asymmetry increases (see [22]). In another words, there are no ”gallery” states in
the QR2 spectrum with this value of ∆x.

.7 InAs/GaAs double concentric quantum rings

The double concentric quantum ring is an example of the double quantum object
with non-identical parts. It is clear for the same heights of the outer and inner
rings, that the volume area of the inner and outer rings are different (we consider
comparable widths for the rings). Tunneling in such DQR occurs through the levels
with the same symmetry due to the level anti-crossing [23]. The electron localization
in the inner ring corresponds to σ about 1 and the outer ring localization - with σ
about -1. In Fig. 10, we show results of the calculations which can be presented as
”traces” for each radial number n=1,2,3. The tunneling in DQRs occurs between
the levels having the same type of wave function symmetry defined by the orbital
quantum number l. For these states the tunneling is possible through the anti-
crossing mechanism [23].
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Figure 10: σ-parameter along the chaotic QR spectrum. The numbers mark the begin-

ning of each n-band. The red filled circles correspond to the ”gallery” states. (inset) The

shape of the chaotic QR is shown by blue. The red circle means the inner boundary of

the wave function localization area of the ”gallery” states, which appears at large values

of the orbital numbers l.

Figure 11: The parameter σ for spectrum of InAs/GaAs concentric DQR. The radial

quantum numbers of the each ring are given for ”independent rings”. The calculated

points, connected in order of increasing l=1,2,3,. . . for each n-band, noted by ”traces”.

The concentric DQR shape is shown in inset: the blue is inner ring and the red is outer

ring. Geometry parameters are R1=30 nm, R2=40 nm for outer ring; R1=16 nm. R2=28

nm for inner ring. The inter-ring distance is 2 nm (the geometry was scaled by factor 1.5

for the calculations).
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.8 Violation of the symmetry in DQD and QR under ho-

mogeneous electric field

In the previous sections we considered the tunneling effect related to the violation
of the shape symmetry of DQDs. Here we show that the effect of the violation of
the symmetry can be replaced by the effect of the external electric potential, which
depends on the coordinate of the electron (see also [24]).

The lateral electric filed F adds the potential Ve = eFx in the Hamiltonian
of the system. The QDs are considered to be directed along the x-axis. The
electron confinement becomes different in the left and right QDs after switching on
an electric field, as it is presented in Fig. 11a) schematically.

Figure 12: a) Electron confinement of DQD in the electric field; b)(left) The σ-parameter

of the single electron states in InAs/GaAs DQD. Open circles (solid circles) correspond

to the calculated results without electric filed (with the electric field F=0.25 (kV/cm));

(right) Density functions D(σ) of the σ-parameter are shown for different values of the

electric field. Dot-dashed curve is the result with F=1 (kV/cm), dashed curve - with

F=4 (kV/cm), solid line - with F=0, doted curve - F=0.25 (kV/cm). Inter-dot distance

is a=2 nm; QD radii are 40 nm.

We consider two versions for the DQD geometry. In the first one, QDs in the
system are identical (radius of each QD is 40 nm). The inter-dot distance a is
fixed in this study. Visualization of spectral properties of the tunneling is given in
Fig. 12 where the parameter σ is presented along the energies of single electron
spectrum in the InAs/GaAs DQD without the electric field and with weak electric
field (F=0.25 kV/cm). In the first case there are no states localized exactly in
one or other QD due to relatively small inter-dot distance (a=2 nm), all states are
”delocalized”. In the second case, there are a number of strong localized states.
The system looks as ”mostly separated” for the electron motion. One can see from
Fig. 12 that weak electric field effects drastically affect the tunneling properties of
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the system (see also [25]), for the whole spectrum. In Fig. 12b) the density functions
D(σ) of the σ-parameter are shown for different values of the electric field. The
maximums of the density D(σ) corresponds to the most probable localization of
the electron in one of the QDs (left or right). The horizontal line corresponds to
D(σ) with no electric field, when the density function is δ-function. It is important
to note that the decreasing of the field magnitude does not change the situation of
the tunneling.

The case of non-identical QDs is more interesting because it better corresponds
to the experimental practice. In the system of non-identical QDs, these character-
istic distances decreased essentially to a few nanometers, depending on the value
of the violation of the QD shape symmetry. For the DQD placed in a longitu-
dinal electric filed the reduction of the tunneling also occurs. In the x direction,
the symmetry of the corresponding quantum wells is violated. The effect of the
electric field to the electron tunneling is visible when ξ ≈ 1. The results of such
calculations for the density functions D(σ), for different values of the electric field,
when ξ=0.9975 are presented in Fig. 13. There are two peaks for σ ≈1 and σ ≈-1.
In other words, the electric field ”delocalizes” electron wave function and reduces
electron transport through the system.

Figure 13: Density functions D(σ) of the σ-parameter are shown for different values of

the electric field for ξ=0.9975 (R1 =40 nm, R2 =39.9 nm). All notations are the same as

in Fig. 12b.

.9 Electron transition in DQD and DQR in magnetic and

electric fields: level anti-crossing

We can rule the localized-delocalized tunneling using the magnetic of electric fields.
The electron transition between parts of double quantum object can be occur in such
situation. The InAs/GaAs concentric DQR located in the perpendicular magnetic
field is modeled in our work [23]. We assume that the QRs are weakly coupled in
this complex. It means that there are no delocalized states when the magnetic field
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is zero. In non-zero field the levels with −l and l are separated due to the Zeeman
effect. Because the rings have different radii, it is possible that the levels of the
weak coupled rings is crossed when the magnetic field is increasing. The levels with
equal orbital number (and the same symmetry) may be anti-crossed (see also [14]).
The anti-crossing is accompanied by delocalization of electron wave function.

The same mechanism of the tunneling can be obtained in the system of non-
identical QDs located in the lateral electric field. Effect of electron transition take
the place also in this case. This situation is shown in Fig. 14. The anti-crossing
of the levels in increasing electric filed is presented in Fig. 14a). The transition of
the electron is occurred when the electric field F reaches a value about 2.2 kV/cm.
The wave function localized initially on the right QD becomes to be delocalized.
Increasing electric filed changes the state to localized one in the left QD.

Figure 14: a) Single electron energy of DQD in lateral electric field F . Anti-crossing

of the levels (1, 0)left and (1, 0)rigth, where (n, l) mentions the set of the redial and

orbital quantum numbers, are shown. QDs have semi-ellipsoidal shape with the di-

ameters D1=28 nm and D2=34 nm, high H =8 nm and inter-dot distance S =3 nm.

b) Transition of electron between right and left QDs under increasing electric field

F . The wave functions of the electron are shown for the initial, tunneling and final

states. The energies E of the states are given.

.10 Conclusions

We studied dynamics of localized-delocalized states of electron spectrum in the
DQDs and DQRs with the respect to the nanostructure geometry. The two types
of the tunneling are found that correspond to the DQDs composed from identical
and non-identical QDs. The violation of the symmetry of the DQD geometry di-
minishes the tunneling. The violation of the symmetry can be caused by a geometry
deformation or by external fields. We show that the electron states with the same
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type of rotation symmetry play important role for the tunneling in the DQDs and
DQRs due to the level anti-crossing mechanism. High sensitivity of the tunneling
to the geometry change can be technologically important.
This work is supported by the NSF (HRD-0833184) and NASA (NNX09AV07A).
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