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.1 Introduction

The subject of this paper is the solving of the system of dynamical equations of
nonlinear elasticity for uniaxial large deformations. It should be noted that that
a number of similar problems were solved earlier. For example, solutions for non-
linear waves (solitons) in solids are obtained in [2, 8, 10]. Also, some solutions for
incompressible materials are known [3, 4].

An exact solution of one of the dynamical problems of nonlinear elasticity is
obtained in [12], where the material properties are described by the two-constant
potential (a particular case of the Murnaghan potential [7]). The solution is self-
similar and is found using the similarity method [11]. In this paper, we use the
same approach for the Blatz–Ko material.

.2 Statement of the problem for the Blatz–Ko material

The problem is formulated in the frame of initial (undeformed) configuration. The
system of equations is written in tensorial form and consists of the following equa-
tions:

The equation of motion

0

∇ ·P + ρ0 f = ρ0 a , (1)

where ρ0 is the initial material density, f is the vector of body forces (hereinafter

this vector is neglected), a =
∂2u

∂t2
is the acceleration vector, u is the displacement

vector, P is the first Piola stress tensor [7],

P = (1 + ∆)Ψ∗−1 · σ, (2)

and σ is the Cauchy stress tensor;
Kinematic equations

G = Ψ ·Ψ∗, F = Ψ∗ ·Ψ, (1 + ∆) = detΨ , Ψ = I+
0

∇u. (3)

Here G is the Cauchy–Green deformation tensor, F is the Finger strain tensor, Ψ
is the deformation gradient, ∆ is the relative volume variation, and I is the identity
tensor.

The Blatz–Ko potential has a form [1]

W =
1

2
µβ

[

I1 +
1

α
(I−α

3
− 1)− 3

]

+
1

2
µ(1− β)

[

I2I
−1

3
+

1

α
(Iα

3
− 1)− 3

]

.

, where Ik = Ik(G) are invariants of the Cauchy–Green deformation tensor G.
An exact solution is obtained for the particular case of this potential with β = 0

and α = 1/2. The constitutive equations for this case may be written as

σ = µ[I3(G)]−3/2
{[

[I3(G)]3/2 − I2(G)
]

I+ I1(G)F− F2

}

. (4)
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.3 The solution of the problem for one-dimensional case

We investigate the one-dimensional motion in the direction of x-axis when u =
u(x)e1. In this case

F = G = (1 + ux)
2e1e1 + e2e2 + e3e3, (5)

I1(G) = (1 + ux)
2 + 2, I2(G) = 2(1 + ux)

2 + 1, I3(G) = (1 + ux)
2. (6)

Substitution of Eqs. (5) and (6) into Eq. (4), taking into account the relation
(2), yields:

P11 = σ11 = µ
[

1− (1 + ux)
−3
]

. (7)

Next, substituting this expression into the equation of motion (1), we obtain

µ
∂

∂x

[

1− (1 + ux)
−3
]

= ρ0utt. (8)

This equation may be written in the form

utt = [f(ux)]x, (9)

where f(ux) = k2 [1− (1 + ux)
−3], k =

√

µ/ρ0.
In order to solve equation 9, we shall use the new independent variable y = x/t

and seek the solution in the form u(x, t) = t U(x/t) = tU(y). As a result, we have
the equation

U ′′(y) {y2[1 + U ′(y)]4 − 3k2}
t[1 + U ′(y)]4

= 0. (10)

This equation can be decomposed into the two equations:

U ′′(y) = 0 (11)

and

y2[1 + U ′(y)]4 − 3k2 = 0. (12)

The solution of Eq. (11) is
U(y) = C1y + C2,

where C1 and C2 are constants. After the replacement y = x/t and substitution of
this solution into the expression u(x, t) = t U(x/t), one finds

u(x, t) = C1x+ C2t.

This solution describes a homogeneous deformation coupled with the uniform mo-
tion. Eq. (12) can be solved with respect to U ′(y):

U ′(y) = −1 ± 4
√
3
√

k/y. (13)

where we assume k > 0.
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Figure 1: The distribution of u along x-axis at different moments in time.

Integrating Eq. (13) we have

U(y) = −y ± 2
4
√
3
√

ky + C. (14)

If we replace y by x/t in Eq. (14) and substitute the result into the expression
u(x, t) = t U(x/t), we obtain the final formula

u(x, t) = −x± 2
4
√
3
√
ktx+ Ct. (15)

A boundary condition should be specified in order to find the constant C. In
particular, one can write the boundary condition in the form u(a, t) = 0, where a is
a given point. Note that the solution above is finite at t = 0 and tends to infinity
as t → ∞. It can be shown that the true stresses tend to infinity as x → 0.

The plots of the solution are shown in Figs. 1 and 2 for the case k = 1,
u(1, t) = 0, and with the positive sign before the second term in the formula (15).
The distribution of the displacement u along x-axis at different moments in time
is presented in Fig. 1, and the distribution of the true stress σ11 along x-axis at
different moments in time is shown in Fig. 2.

.4 Conclusion

We obtain an exact analytical solution of the one-dimensional dynamical problem
of nonlinear elasticity for the Blatz–Ko material under finite strains. This solution
may be used in testing of numerical solutions [6] for dynamical elasticity problems
under finite strains.

Acknowledgements.The author is grateful to Prof. V.A. Levin for useful discus-
sions.
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Figure 2: The distribution of true stress σ11 along x-axis at different moments in

time.

.References

[1] Blatz P.J. and Ko W.L. Applications of finite elasticity theory to deformation

of rubbery materials. Trans. Soc. Rheol. 1962, 6, pp. 223–251

[2] Dai H.-H. and Huo Y. Solitary shock waves and other travelling waves in a

general compressible hyperelastic rod. Proc. Roy. Soc. London A 2000, 456,
pp. 331–363

[3] Destrade M. Finite-amplitude inhomogeneous plane waves in a deformed

Mooney-Rivlin material. Quarterly Journal of Mechanics and Applied Mathe-
matics 2000, 53, pp. 343-–361

[4] Hill J.M. and Wegner J.L. New families of exact nonlinear waves for the neo-

Hookean finite elastic solid. Mathematics and Mechanics of Solids 2004, 9,
pp. 81–95

[5] Knowles J.K. Large amplitude oscillations of a tube of incompressible elastic

material. Q. Appl. Math. 1960. 18, pp. 71–77

[6] Levin V.A. and Vershinin A.V. Non-stationary plane problem of the successive

origination of stress concentrators in a loaded body. Finite deformations and

their superposition. Communications in Numerical Methods in Engineering
2008, 24, pp. 2229–2239

[7] Lurie A.I. Nonlinear theory of elasticity. 1990, Amsterdam: North-Holland



32 K.M. Zingerman

[8] Miroshnichenko A.E., Vasiliev A.A., Dmitriev S.V. and Shigenari T. Inelastic
three-soliton collisions in a weakly discrete sine-Gordon system. Nonlinearity
2000, 13, No. 3. pp. 837–848

[9] Murnaghan F.D. Finite deformation of an elastic solid. 1951, New York: Wiley,
140pp.

[10] Samsonov A.M. Strain solitons in solids and how to construct them. 2001,
Chapman&Hall/CRC Press, 227pp.

[11] Sedov L.I. Similarity and Dimensional Methods in Mechanics, Tenth Edition.

1993, CRC Press, 496pp.

[12] Zingerman K.M. Exact solution of one dynamic problem in the elasticity theory

under finite strains. 2013, Vestnik TvGU. Seriya: Prikladnaya matematika
[Herald of Tver State University. Series: Applied Mathematics], No. 3(30),
pp. 19–25 (in Russian)


	Introduction
	Statement of the problem for the Blatz–Ko material
	The solution of the problem for one-dimensional case
	Conclusion

