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.1 Introduction

The generalized eigenvalue problem

AX = λBX, (1)

with real symmetric matrices A, B and a positive definite matrix B, is one of the
main problems of computational linear algebra [1], which appears in many fields
of natural and engineering sciences. For example, it arises in quantum mechan-
ical calculations of the electronic and rotational-vibrational states of atoms and
molecules using different methods [2, 3, 4, 5, 6], as well as in numerous engineering
applications related to vibrations of constructions [7, 8, 9, 10]. The precision of
such calculations strongly depends on the dimension of the matrices in Eq. (1) and
usually increases with the matrix dimension. The dimension of the matrices in
modern calculations may substantially exceed 104 and in many cases only extreme
eigenvalues and corresponding eigenvectors are required.

The methods for calculating the eigenvalues of matrices can be divided into two
groups: the methods for calculating all eigenvalues with corresponding eigenvectors
and those for calculating the extreme eigenvalues with corresponding eigenvectors.
The methods of the first group are applicable for matrices of dimensions not greater
than 104 using modern computers, while for the methods of the second group the
dimension of matrices is limited mainly by the available computational resources.

In the present paper we consider only iterative methods for calculating the
extreme eigenvalues. It will be shown that such methods can be classified in accor-
dance with two general algorithms, which differ from each other in the incorporation
of the Krylov subspace with iterations. Classification of all known iterative meth-
ods is probably impossible, because of the great number of publications related to
the topic during the last decades. However, the most important types of iterative
methods, presented in the books [1, 11, 12, 13, 14, 15] and reviews [16, 17, 18, 19],
as well as some methods published later will be taken into account. The analysis of
these algorithms reveals unused possibilities in the development of iterative meth-
ods which allows the proposal of many new methods. The problems arising in the
classification of the vectors, which form a basis of the Krylov subspace, will also be
discussed.

.2 General algorithms of projection and projection-iterative

methods

The development of iterative methods for the determination of eigenvalues and cor-
responding eigenvectors of Eq. (1) has been initiated after the formulation of the
Rayleigh-Ritz variational principle [20, 21, 22]. This principle transforms the alge-
braic generalized eigenvalue problem (1) into a variational problem for the Rayleigh
functional

ρ(X) =
(X,AX)

(X,BX)
, (2)
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and thus the eigenvalue problem (1) is reduced to the determination of the minimum
points of the Raylegh functional (2).

The analysis of the Rayleigh-Ritz variational principle have led to the proof
of the Courant-Hilbert-Fischer minimax theorem [23, 24], the Hyleraas-Undheim-
McDonald variational theorem [25, 26], as well to the proof of the fact that the
approximate eigenvectors are close to the exact ones [27, 28]. These theorems have
founded the basis of projection methods.

Further development of the Ritz variational method was continued by Bubnov
[29] and Galerkin [30], where a projection method for solving the general variational
problem was proposed and employed in practical calculations.

An important step towards to the modern projective methods was made by
Krylov [31] who demonstrated that the vectors X,B−1AX, ..., (B−1A)N−1X form a
system of linear independent basis vectors in the space associated with the B−1A
matrix of the order of N for the problem (1).

The simple power and relaxation methods [32, 33, 34, 35, 36] were the first
successful iterative algorithms that have been developed for the determination of
extreme eigenvalues of Eq. (1). It is difficult to decide when the power method has
been introduced. Probably, this is due to the fact that the simple power method
naturally follows from the good approximation of the eigenvector corresponding to
the largest absolute eigenvalue of the B−1A matrix by the vector (B−1A)kX for
sufficiently large k.

An important projection method has been developed by Lanczos [37] for the case
of the unit matrix B. In fact, Lanczos has shown that the usual orthogonalization
of the Krylov basis vectors yields a different set of basis vectors of the same space
and that the original matrix has the tridiagonal form in this basis. For this reason,
Lanczos method initially has been considered only as a tridiagonalization method
of a real symmetric matrix. Later, however, it was found [38] that this method
could be successfully used also for calculating of the extreme eigenvalues of real
symmetric matrices. This property of the Lanczos method follows from the nature
of the basis vectors in this method, which are consequent orthogonal gradients of
the Rayleight functional (2).

The first projection-iterative algorithm for the calculation of extreme eigenvalues
of Eq. (1) with the unit matrix B was developed by Karush [39]. In this method the
orthogonal basis vectors introduced by Lanczos [37] were used to form a projection
of the original matrix onto Krylov subspace.

Bauer [40] was the first to recognize that the iterations in the simple power
method could be performed not only with a single vector, but also with a block of
orthogonal vectors. Such simple improvement results in significant improvement of
convergence of iterations.

A successful projection method for the calculation of extreme eigenvalues of
Eq. (1) with the unit B matrix was developed by Davidson [41]. In contrast to the
Lanczos method, it uses the nonorthogonal relaxation system of vectors [34, 42]
with update of the new approximated eigenvector after each multiplication of the
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original matrix by the vector. The new vector is then used for the calculation of
the correction vector needed for the extension of the Krylov subspace. This results
in significant improvement of the computational efficiency of the Davidson method
as compared to the Lanczos method.

Finally, Liu [43] made the last step to the general algorithm of the projection and
projection-iterative methods known now. He has proposed a block generalization of
the Davidson algorithm by introducing Bauer’s idea into the Davidson algorithm.

The analysis of these iterative methods shows that the iterations in them can
be implemented using one of two general algorithms presented below.

Algorithm 1. Block projection method
Step 1. For the required m-th extreme eigenvalue define a set of k orthogonal

vectors, which approximate the first eigenvectors X1,X2,...,Xk (k≥m),
and a set of orthogonal vectors Y1,Y2,...,Yl. Form AV1,AV2,...,AVk+l;
BV1,BV2,...,BVk+l and Fij = (AVi, Vj), Sij = (BVi, Vj), i, j = 1, ..., k + l,
where Vi = Xi for i = 1, ...k and Vi = Yi for i = k + 1, ..., k + l.

Step 2. Solve Fd = ǫSd; select l eigenvalues ǫj , j = m + 1, ..., m+ l with corre-
sponding eigenvectors dj = (dj1, ..., d

j

k+l)
t of this equation starting from

the m-th eigenvalue.

Step 3. Form l vectors Zj =
∑k+l

i=1
djiVi and residual vectors Rj = AZj − ǫjBZj

and check the convergence using ‖Rj‖.
Step 4. Define a new set of vectors Yk+l+i, i = 1, ..., l, by using vectors Zj obtained

at Step 3.
Step 5. Orthonormalize Yk+l+1, Yk+l+2, ..., Yk+2l to Vl, V2, ..., Vk+l and use them for

the extension of {Vi}
k+l
i=1.

Step 6. Put k = k + l. Form Fij = (AVi, Vj) and Sij = (BVi, Vj) for new i, j and
return to Step 2.

Algorithm 2. Block projection-iterative method
Step 1. Define a set of k orthogonal vectors, which approximate the first eigen-

vectors X1,X2,...,Xk (k≥m), where m is the number of required extreme
eigenvalue. Define the Krylov subspace dimension N = k ∗M , where M
is an integer number.

Step 2. Calculate the orthogonal basis vectors of the Krylov subspace {Vi}, i =
1, ..., N .

Step 3. Form AV1,AV2,...,AVN ; BV1,BV2,...,BVN and Fij = (AVi, Vj), Sij =
(BVi, Vj), i, j = 1, ..., N .

Step 4. Solve Fd = ǫSd. Select the extreme eigenvalues ǫj , j = 1, ..., k with
corresponding eigenvectors dj = (dj1, ..., d

j
N)

t.

Step 5. Form k vectors Zj =
∑N

i=1
djiVi and residual vectors Rj = AZj − ǫjBZj .

Check the convergence using ‖Rj‖.
Step 6. Orthogonalize Z1, Z2, ..., Zk. Return to Step 1 and use {Zi} instead of

the initial set of vectors.

The methods of both classes are intended for calculating the m-th extreme
eigenvalue or a group of extreme eigenvalues and corresponding eigenvectors of
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Eq. (1). It should be emphasized that the methods of both classes are projection
methods. The difference between them arises from different incorporation of the
Krylov subspace with iterations. Thus, in the first class of methods the iterations
are needed to calculate the new vectors for an extension of the Krylov subspace,
which is used for approximating the extreme part of the spectrum, while in the
second class of methods a Krylov subspace of fixed dimension is used to calculate the
new approximate vectors. The block versions of these methods permit to calculate
degenerate eigenvalues and corresponding eigenvectors of Eq. (1).

Note also, that the vectors at Step 1 and Step 5 of Algorithm 1 and at Step
2 and Step 6 of Algorithm 2 can be mutually orthogonalized with respect to the
matrix B, instead of usual orthogonalization, together with corresponding reduction
of the generalized eigenvalue problem to a usual eigenvalue problem at Step 2 and
Step 4, respectively. Practically the dimension of the Krylov subspace in Algorithm
1 is restricted by a certain value and the methods are restarted when the current
dimension of the Krylov subspace reaches the limit.

.3 Further developments of iterative methods

Lanczos method [37] permits to transform the symmetric dense matrix A of the
eigenvalue problem

AX = λX, (3)

into a tridiagonal unsymmetric matrix. This is not convenient from the compu-
tational point of view. Therefore, in [44, 38, 45, 46] the variants of the Lanczos
methods were considered that yield a symmetric tridiagonal matrix. Taking into
account the results of these studies, an extension of the Lanczos method on the
generalized eigenvalue problem (1) has been proposed in [12] and independently in
[47]. In these papers it was shown that Eq. (1) in the space of basis vectors

P0 = X0

SP1 = AP0 − λ0SP0

SPi+1 = APi − λiSPi − βiSPi, (i = 1, 2, ..., N − 2),
(4)

where
αi = (AHPi, Pi)/(SPi, Pi), (i = 0, 1, ..., N − 1)
βi = (APi, Pi−1)/(SPi−1, Pi−1), (i = 1, 2, ..., N − 1),

transforms into the eigenvalue problem (3) A being a tridiagonal matrix.
The convergence of the iterative method is very important in calculations of

the selected eigenvalues of Eq. (1). The analysis of Algorithm 1 and Algorithm 2
shows that the properties of the basis vectors of the Krylov subspaces, used for
the calculation of projections of the original matrices, to a large extent determine
the convergence of the iterative methods. The system of basis vectors (4) is a
system of orthogonal gradient vectors. Numerical experiments [33, 1, 34, 42] with
single vector iterative methods for Eq. (3) show that with relaxation vectors the
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convergence of iterations is better than with gradient vectors. Taking this result into
account, Davidson proposed the method [41] that uses the relaxation vectors. The
generalization of Davidson’s method for Eq. (1) was presented in [48] together with
the projection-iterative method. The basis vectors in these methods are calculated
in accordance with the following equation

Xl,j+1 = (A− ρ(Xj)B)Xl,j/(ρ(Xj)Bl,l −Al,l) ,

where the fist index corresponds to a vector element, while the second one shows the
iteration number. The algorithms of these two methods correspond to Algorithm 1
and Algorithm 2 presented above with no block generalization.

It is well known in the numerical analysis, that the iterative methods, derived by
using the Newton-Raphson approach, display nearly quadratic convergence [49]. On
the other hand, the methods mentioned above do not possess quadratic convergence
near the solutions. This fact stimulates further developments and modifications of
the new and known methods with the main aim of improving the convergence of
iterations [50]. In Ref. [51] it was found that the correction vector [34, 42] used
in Davidson method [41] often has the direction close to the initial one. This
results in convergence problem in the Davidson method. To improve the Davidson
method it was proposed to use the approach introduced by Jacobi that implies the
calculation of a correction vector in an orthogonal space. Following this way, the
Jacobi-Davidson method has been developed [51, 52, 53]. In this method a new
correction vector U is calculated from the equation

(I −XX+)(A− ǫI)(I −XX+)U = −R , (5)

where R = (A−ǫI)X is a residual vector, while ǫ and X are current approximations
for the eigenvalue and eigenvector of Eq. (3), respectively. Numerical tests of this
method show that it converges faster than quadratically at the end of iterations.
This fact is confirmed by the proof that the Jacobi-Davidson correction vector has
the second-order property [52]. Thus the Jacobi-Davidson method can be consid-
ered as a Newton-type method. However, it was not clear which functional could
be used for the derivation of the correction vector (5).

In this connection in [54] it was noted that the Lagrange functional

L(X, λ) = X tAX − λ(X tBX − 1) , (6)

whose stationary points correspond to the eigenvalues of Eq. (1), can be used to ob-
tain the Newton-type correction vector. Then the application of Newton-Raphson
approach to the functional (6) yields the equation for correction vector δX

(A− λB)δX − δλBX = −(A− λB)X , (7)

where

δλ =
X tB(A− λB)−1(A− λB)X

X tB(A− λB)−1BX
. (8)
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The Lagrange correction vector defined by equations (6) and (7) is exactly the
Jacobi-Davidson correction vector in an equivalent form (Eq. (16) in [51]) or the
Olsen correction vector [55]. Hence, the Jacobi-Davidson and Olsen methods can
be treated as Newton-Raphson-type methods for the Lagrange functional. The
derivation of the correction vector (6), (7) in [54] provides an independent proof of
the second-order property of the Jacobi-Davidson correction vector, initially given
in [52].

The Lagrange correction vector given above, allows the development of the
block Newton-Lagrange method for the calculation of selected extreme eigenvalues
of Eq. (1), presented in [54]. In this method, the Ritz eigenvalues for evaluation of
λ and diagonal AD and BD matrices in (A − λB)−1 were used in the formulas for
correction vector (7) and (8).

The Newton-type correction vector can also be obtained by applying the Newton-
Raphson approach to the Rayleight functional (2). This was demonstrated in [56],
where the following equation for correction vector δX was obtained

(A− ρ(X)B −BXG+ −G(BX)+)δX = −G , (9)

where G = (A − ρ(X)B)X , and the block Newton-Rayleigh method using this
correction vector was proposed. The correction vector given by (9) is orthogonal to
the current gradient vector G. It is clear because X is a solution of the homogeneous
system of linear equations

(A− ρ(X)B − BXG+ −G(BX)+)δX = 0

and, hence, Eq. (9) has a solution when δX is orthogonal to G.
All three correction vectors calculated from Eqs. (5), (7), and (9) possess the

second-order property. Therefore, the iterative methods that used them [51, 54, 56]
demonstrate the convergence higher than quadratic at the end of iterations, because
they use a few such correction vectors for calculating the new ones. However, the
numerical complexity of calculating the correction vectors from the solutions of
systems of linear equations is proportional to ∼ N3 and thus it is comparable with
the calculation of all eigevalues and eigenvectors of Eq. (1) by using other methods.
This results in a limitation on the maximal dimension of matrices for which the
extreme eigenvalues can be calculated.

In this connection let us consider approximations which reduce the numerical
complexity of solutions of linear equation systems (5), (7), and (9). The simplest
diagonal approximation for matrices in these equations were proposed in [56, 54] and
three block diagonal methods: Jacobi-Davidson, Newton-Rayleight, and Newton-
Lagrange have been proposed. The correction vectors in them are calculated in
accordance with the following formulas

δXi,j+1 = −Gi,j/[(Aii − ǫjBii)
(

Iii − Bii(Xi,j)
2
)2
] ,

δXi = −Gi/(Aii − ρBii − BiiXiGi −GiBiiXi) ,
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δXi,j = (Gi,j − δǫi(BX i)j)/(A− ǫiB)jj ,

where

δǫi = [(X i)tB(AD − ǫiBD)
−1(A− ǫiB)X i]/[(X i)tB(AD − ǫiBD)

−1BX i] .

Another approach for the simplification of the solutions of Eqs. (5), (7), and (9)
consists in using band submatrices instead of the full matrices in the left-hand side
of these equations. It permits the development of the block-band methods, i.e.,
Jacobi-Davidson, Newton-Rayleight, and Newton-Lagrange, presented in [56, 54].

A simplification of solutions can also be reached by using the skeleton matrix
(SM) approximation for left-hand matrices in (5), (7), and (9). It can be formulated
as follows: only those matrix elements of matrices are taken into account whose
absolute values are greater than a predefined threshold (Thr). From this definition
it follows that the full Newton-Raphson equation is recovered when Thr = 0.
Hence, the predefined threshold (Thr) changes the complexity and the precision of
the solution of the Newton-Raphson equation from the simplest diagonal matrices
to the full ones. The block methods: Jacobi-Davidson, Newton-Rayleight, and
Newton-Lagrange with SM approximation were proposed in [56, 54].

.4 Test calculations

Accurate numerical tests of the new methods mentioned above with the aim to
determine their performance in different cases is a difficult problem. Therefore, the
few tests presented below have to be considered only as a first step in this direction.

The consideration of the correction vectors in the methods presented above
shows that a double effect is caused by the approximations used in the solution
of the Newton-Raphson equations. On the one hand, it leads to increasing the
number of iterations, which are needed to calculate the required eigenvalue and
the corresponding eigenvector. But on the other hand, it reduces the computa-
tional complexity of calculations of the new correction vectors and, therefore, the
iterations become less expensive. For this reason, all tested methods are naturally
divided into three groups: the Newton-Raphson-type methods with highest con-
vergence at the end of iterations; the fastest diagonal type iterative methods that
display the slowest convergence; and the methods with SM approximation.

The following notations will be used below: NL is for the Newton-Lagrange
method; NR is for the Newton-Rayleigh method; JD is for the Jacobi-Davidson
method; D is for the Davidson method; and R is for the residual method. An
additional letter B will be used for the block version of these methods, while the
additional letters D and SM denote the diagonal method and the method with the
skeleton matrix approximation. In all numerical tests the iterations for calculating
eigenvalues and the iterations for solving the system of linear equations were ter-
minated when the Euclidean norm of the residual vector was smaller than 10−10.
The Euclidean norm of the final residual vector, the number of required iterations,
and the number of the matrix-vector (MV ) multiplications are presented in tables
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Table 1: Example 1. Convergence on the norm of the residual vector for different

methods.

Iter. DNL DNR DJD D NL NR JD

1 0.168+03 0.168+03 0.168+03 0.168+03 0.168+03 0.168+03 0.168+03

2 0.718+02 0.870+00 0.710+00 0.723+02 0.382+00 0.711+02 0.711+02

3 0.418+02 0.548+00 0.770+00 0.636+02 0.923-01 0.358+02 0.358+02

4 0.110+02 0.629-01 0.206+00 0.237+02 0.165-01 0.247+02 0.247+02

5 0.162+01 0.173-01 0.592-01 0.173+02 0.641-03 0.617+01 0.617+01

6 0.300+00 0.175-02 0.794-02 0.138+02 0.477-04 0.228+01 0.228+01

7 0.648-01 0.954-04 0.115-02 0.417+01 0.274-05 0.698+00 0.698+00

8 0.134-01 0.120-04 0.925-04 0.547+00 0.138-06 0.491-02 0.491-02

9 0.134-02 0.787-06 0.898-05 0.164+01 0.670-08 0.183-09 0.182-09

10 0.134-03 0.474-07 0.521-06 0.847+00 0.298-09 0.936-10 0.136-09

11 0.105-04 0.212-08 0.381-07 0.528+00 0.122-10 0.118-09

12 0.710-06 0.121-09 0.172-08 0.153+01 0.108-09

13 0.484-07 0.426-11 0.101-09 0.294+01 0.981-10

14 0.275-08 0.377-11 0.670+01

15 0.147-09 0.611+00

16 0.554-11 0.447+00

to demonstrate the convergence and the computational complexity of the different
methods in the test calculations.

Example 1. The largest eigenvalue of the matrix whose non-zero elements are
defined as Ai,j = i for i = j; Ai,j = 0.5, for j = i − 1, j = i + 1; Ai,j = 0.5
for i = 1, j = N , and i = N, j = 1 was calculated by different methods. The
dimension of the matrix was equal to 1000. The initial vector was defined as
(1.0, 0.01, ..., 0.01)t. The results of the test calculations obtained for four diagonal
and three full methods are given in Table 1. The Newton-Rayleigh method shows
overall the best performance. And the overall performance of the Newton-Lagrange
method is better compared to that of the Jacobi-Davidson method. However, at the
beginning the Newton-Lagrange method demonstrates the best performance due to
using the approximations mentioned above. The stagnation of the Jacobi-Davidson
method observed in this test calculation can be attributed to rounding errors arising
from the projector operators used in this method. The performances of the diagonal
DJD, DNR, and DNL methods do not differ significantly from those of the full
methods. This means that the diagonal methods can be extremely efficient in
some cases. Among the diagonal methods the convergence of the diagonal Newton-
Rayleigh method is the fastest. The convergence of the diagonal Jacobi-Davidson
method comes at the second, and the diagonal Newton-Lagrange method at the
third place. The Davidson method required as many as 54 iterations in this test.

Example 2. In this example the 15 lowest eigenvalues and corresponding eigen-
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Table 2: Example 2. Number of iterations and matrix-vector multiplications for

different methods.

Method Iter. MV mult.

Block Newton-Lagrange (BNL) 6 66

Block Newton-Rayleigh (BNR) 6 59

Block Jacobi-Davidson (BJD) 8 73

With SM approximation (Thr = 0.005)

Block Newton-Lagrange (BNLSM) 12 140

Block Newton-Rayleigh (BNRSM) 12 134

Block Jacobi-Davidson (BJDSM) 14 149

Block Residual (BRSMS) 13 143

Diagonal

Block Diagonal Newton-Lagrange (BDNL) 25 275

Block Diagonal Newton-Rayleigh (BDNR) 25 275

Block Diagonal Jacobi-Davidson (BDJD) 24 276

Block Davidson (BD) 25 276

vectors of the matrix of dimension 5564 arising in an ADC calculation [57] of the
excitation spectrum of the H2O molecule have been calculated by using three full
block methods, four block methods with SM approximation, and four block di-
agonal methods. The results of these test calculations are presented in Table 2.
In this test the block Newton-Lagrange and the block Newton-Rayleigh methods
show the best performance in the number of iterations, the block Newton-Rayleigh
method being superior to the Newton-Lagrange method with respect to the number
of matrix-vector multiplications. All block diagonal methods show similar perfor-
mance. The performance of the methods with SM approximations are between
those of the block full methods and block diagonal methods. The Newton-Rayleigh
and the Newton-Lagrange methods are seen to be superior to the block residual
and the block Jacobi-Davidson methods with respect to the number of iterations
and matrix-vector multiplications.

Example 3. In this test, the lowest 10 eigenvalues of the case39 matrix of dimen-
sion 40216 from the sparse matrix collection of University of Florida (http://www.
cise.ufl.edu/research/sparse/matrices/) have been calculated. Only four block di-
agonal methods were used in this test because the case39 matrix is a very sparse
matrix with the number of non-zero elements less than 0.07%. The obtained results
are presented in Table 3. In this test the block diagonal Newton-Lagrange method
has required the smallest number of iterations and it was the second in the number
of the matrix-vector multiplications. The block diagonal Newton-Rayleigh method
was the second in the number of iterations and it has required the smallest num-
ber of the matrix-vector multiplications. The performance of the block diagonal
Jacobi-Davidson and block Davidson methods were not as good as the former two
methods.



20 A. V. Mitin

Table 3: Example 3. Number of iterations and matrix-vector multiplications for

different methods.

Method Iter. MV mult.

Block Diagonal Newton-Lagrange (BDNL) 13 125

Block Diagonal Newton-Rayleigh (BDNR) 16 119

Block Diagonal Jacobi-Davidson (BDJD) 34 158

Block Davidson (BD) 24 137

.5 Conclusions

During the last years, a significant progress was reached in the development of
efficient methods for calculating extreme eigenvalues of Eq. (1). The methods pos-
sessing higher than quadratic convergence at the end of iterations were developed.
They are based on using correction vectors with second-order properties. It was
shown that the vectors (5), (7), and (9) can be considered as Newton-Raphson
vectors. However, these vectors can also be derived by employing other meth-
ods. Thus, the vector (5) was obtained by introducing the Jacobi approach into
the Davidson method. It was derived, also, in an equivalent form by using the
perturbation theory of the second order. Additionally, it can be noted that the
Jacobi-Davidson correction method can be directly obtained by supposing that the
orthogonal variation of eigenvector X + (I +XX+)δX has to provide a zero varia-
tion of the residual vector δR(X + (I +XX+)δX) = 0. This leads to the equation
for the Jacobi-Davidson correction vector

(A− λB)(I +XX+)δX = −(A− λB)X ,

which transforms to the expression for Jacobi-Davidson correction vector after sym-
metrization of the left-hand-side matrix. This derivation has an advantage over the
other ones, because it does not use any approximations.

The numerical tests show that the convergence of the block Newton-Lagrange
method is between that of the block Newton-Rayleigh and the block Jacobi-Davidson
methods. The convergence of the block-diagonal Newton-Lagrange method is slightly
better than that of the Davidson and the block-diagonal Jacobi-Davidson methods,
matching that of the block-diagonal Newton-Rayleigh method. The convergences
of the methods with the SM approximation are between those of the corresponding
full methods and their diagonal versions. The threshold of the SM approximation
permits to tune the convergence behavior of a method from the full to the diagonal
version.

The test calculations in Example 1 show that the convergence of the diagonal
methods can be only a little worse than that of the full ones. This means that in
some cases the diagonal methods could significantly outperform the full methods,
because in the latter ones a solution of the Newton-Raphson linear equations sys-
tem is required. Therefore, the investigations of the convergence rates of different
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methods are an important field of further research. Refs. [58, 59] give examples of
such studies, where analytic estimations of the convergence rates were obtained for
some iterative methods.
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