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.1 Introduction

Since COVID-19 was first detected in December 2019, it has rapidly spread across
the globe. As of 21 September 2023, over 770 million people have been infected
and more than 6 million people have died globally. The rapid spread of COVID-
19 poses enormous challenges to both the global healthcare system and economic
development, making it one of the worst public health crises of our time. Under-
standing the dynamics of the spread of COVID-19 is critical to developing effective
public health interventions to control its spread. Mathematical modeling provides a
valuable tool for studying infectious disease dynamics and predicting the impact of
interventions. Currently, a large number of statistical analyses and mathematical
models have been developed to investigate the characteristics of epidemic transmis-
sion and the effectiveness of prevention and control measures.

Mathematical models play a crucial role in the COVID-19 prevention and con-
trol process, mainly in the aspects of prediction and early warning, risk analysis,
and the resumption of work and production [1, 2]. Chinazzi et al. [3] employed basic
infectious disease models to consider the impact of travel restrictions on population
movement and contact, and evaluated the effects of these measures by simulating
the process of epidemic transmission. The results demonstrated that travel restric-
tions can significantly delay the spread rate of the epidemic and reduce the scale
of the outbreak. Peeri et al. [4] compared the outbreaks of SARS, MERS, and
COVID-19 using infectious disease models based on differential equations, and the
results showed that COVID-19 spread faster and on a larger scale than SARS and
MERS, but its fatality rate was relatively low. Hiroshi et al. [5] employed Bayesian
statistical models to analyze the COVID-19 outbreak on Japanese cruise ships, es-
timating the proportion of asymptomatic infections and the risk of epidemic trans-
mission. Li et al. [6] discussed how the mathematical model of infectious diseases
helps with epidemic prevention and control in the early stages of the COVID-19
pandemic, and its crucial role in major public health emergencies. Based on the es-
tablished COVID-19 time-lagged non-autonomous infectious disease model, it was
revealed that the delay in diagnosis can effectively delay the peak time of infection.
This provides an important model reference for the analysis of complex epidemics.
There is also a lot of research literature on mathematical models of COVID-19
[7, 8, 9, 10, 11, 12].

Fractional calculus, as an extension of classical integer-order calculus, has emerged
as a research hotspot in the field of control [13]. Numerous scientific studies have
demonstrated that systems modeled or controlled using fractional calculus exhibit
superior performance compared to integer-order systems, such as enhanced robust-
ness and self-noise rejection [14, 15]. Given the current global pandemic of COVID-
19, which poses a severe test for human society, it is crucial to delve deeper into
the study and application of fractional order theory [16, 17]. This is particularly
relevant for various practical issues in mathematics, biology, computer theory, and
engineering. By exploring the potential of fractional calculus, we can develop inno-
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vative solutions to address complex challenges and improve system performance.

In the realm of infectious disease kinetic research, scientists have discovered
that following infection, the human body initially exhibits no symptoms, and only
after a certain period of time do some symptoms gradually manifest [18, 19]. Early
on, researchers did not consider the delay factor, but later, investigators found that
incorporating a time lag (either single or double) leads to more realistic results, such
as the latency cycle, immune cycle, and recovery cycle of the disease [20, 21]. This
area of research has yielded numerous valuable findings, providing a foundation for
more effective prevention and treatment strategies for infectious diseases. By better
understanding the dynamics of infection and the impact of time delay, researchers
can develop more targeted and efficient interventions to combat infectious diseases
[22, 23, 24].

In this paper, based on the existing research results of predecessors, we will
focus on the following Caputo fractional order mathematical model for COVID-19
with time delay

DαS(t) = A− βS(t− τ)I(t− τ)− dS(t),
DαI(t) = βS(t− τ)I(t− τ)− (d+ a+ γ + σ)I(t),
DαQ(t) = σI(t)− (d+ b+ p)Q(t),
DαR(t) = γI(t) + pQ(t)− dR(t),

(1.1)

where α(0 < α ≤ 1) stands for the order of the equation; S(t), I(t), Q(t), R(t)
represents the number of susceptible, infected, quarantined and removed persons
at time t, respectively. All parameters are non-negative. A is the recruitment rate
of S(t), β denotes the infection coefficient, d represents the natural mortality rate,
a denotes the death rate of the disease, σ represents quarantine rate, b denotes the
death rate of the disease. γ and p represent the recover rate from group I(t) and
Q(t) to R(t), respectively. τ denotes the latent period of the disease.

The initial value condition of model (1.1) is

S(θ) = ϕ1(θ) > 0, I(θ) = ϕ2(θ) > 0, Q(0) = Q0 > 0,

R(0) = R0 > 0, θ ∈ [−τ, 0]. (1.2)

In this paper, we will study stability and bifurcation problems for the system of
(1.1) using the theory of fractional-order stability and delay differential equations.
The paper is organized as follows: Section 2 provides preliminaries, including the
definition of the Caputo fractional-order derivative and some useful lemmas. Section
3 presents some basic results, such as the existence and uniqueness, non-negativity,
and positive invariance of solutions for system (1.1). In Section 4, we derive local
asymptotic stability and bifurcation results for the fractional-order delay COVID-
19 model. Section 5 provides numerical examples to verify the obtained theoretical
results. Finally, Section 6 concludes the paper.
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.2 Preliminaries

In this section, we present the definition of Caputo fractional-order derivative and
some useful lemmas are recalled for next analysis.

Definition 2.1[13] The fractional integral of order α for a function f(x) is
defined as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

where x ≥ 0, α > 0, Γ(·) is the Gamma function, Γ(t) =

∫ ∞
0

xt−1e−xdx.

Definition 2.2[13] The Caputo fractional derivative of order α for the function
f(x) ∈ Cn([0,∞),R) is defined by

Dαf(x) =
1

Γ(n− α)

∫ x

0

f (n)(τ)

(t− τ)α−n+1
dτ,

where x ≥ 0 and n is a positive integer such that n− 1 ≤ α < n.

Furthermore, when 0 < α < 1,

Dαf(x) =
1

Γ(1− α)

∫ x

0

f ′(τ)

(t− τ)α
dτ .

Lemma 2.1[25] Consider the following fractional order differential system Ca-
puto derivative

DαX(t) = AX(t), X(0) = X0, (2.1)

where α ∈ (0, 1], X(t) ∈ Rn, X(t) ∈ Rn, A ∈ Rn×n. The characteristic equation of
system (2.1) is |sαE−A| = 0. If all of the roots of the characteristic equation have
negative real parts, then the zero solution of the system is asymptotically stable.

Lemma 2.2[26] Consider the following fractional delay differential system with
Caputo derivative

DαX(t) = AX(t) + BX(t− τ), X(t) = φ(t), t ∈ [−τ, 0], (2.2)

where α ∈ (0, 1], X(t) ∈ Rn, A,B ∈ Rn×n and τ ∈ Rn×n
+ , then the characteristic

equation of system (2.2) is |sαE − A − Be−sτ | = 0. If all of the roots of the
characteristic equation have negative real parts, then the zero solution of the system
is asymptotically stable.
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.3 Basic results

In the subsequent section, we will delve into the existence and uniqueness of the
solution for system (1.1). Additionally, we will establish that the solutions of system
(1.1) with initial condition (1.2) are nonnegative and positively invariant.

Theorem 3.1 If C ∈ C([−τ, 0],R+
4 ) is the continuous function of Banach

space and z0(t) ∈ C in an initial condition, then system (1.1) has a unique so-
lution z(t) ∈ Θ, where z(t) = (S(t), I(t), Q(t), R(t)), Θ = {(S(t), I(t), Q(t), R(t)) ∈
R4|max{|S(t)|, |I(t)|, |Q(t)|, |R(t)|} ≤ L}.

Proof. Consider the mapping H(z) = (S(t), I(t), Q(t), R(t)), where

H1(z(t)) = A− βS(t− τ)I(t− τ)− dS(t),
H2(z(t)) = βS(t− τ)I(t− τ)− (d+ a+ γ + σ)I(t),
H3(z(t)) = σI(t)− (d+ b+ p)Q(t),
H4(z(t)) = γI(t) + pQ(t)− dR(t).

For any t1, t2 ∈ Θ,

‖H(z(t1))−H(z(t2))‖ ≤ ‖H1(z(t1))−H1(z(t2))‖+ ‖H2(z(t1))−H2(z(t2))‖
+‖H3(z(t1))−H3(z(t2))‖+ ‖H4(z(t1))−H4(z(t2))‖

= |βS(t1 − τ)I(t1 − τ) + dS(t1)− βS(t2 − τ)I(t2 − τ)− dS(t2)|
+|βS(t1 − τ)I(t1 − τ)− βS(t2 − τ)I(t2 − τ)− (d+ a+ γ + σ)I(t1)

+(d+ a+ γ + σ)I(t2)|
+|σI(t1)− (d+ b+ p)Q(t1)− σI(t2) + (d+ b+ p)Q(t2)|
+|γI(t1) + pQ(t1)− dR(t1)− γI(t2)− pQ(t2) + dR(t2)|
≤ (2βL+ d)|S(t1)− S(t2)|+ (d+ a+ 2γ + 2σ)|I(t1)− I(t2)|

+(d+ b+ 2p)|Q(t1)−Q(t2)|+ d|R(t1)−R(t2)|
≤ M|z(t1)− z(t2)|,

where M = max{2βL+ d, d+ a+ 2γ + 2σ, d+ b+ 2p, d}. Hence, H(z(t)) satisfies
Lipschitz condition. From Lemma 5 in [27], we can obtain that system (1.1) has a
unique solution z(t).

Theorem 3.2 The solutions of system (1.1) with initial condition (1.2) are
nonnegative.

Proof. Assume that R4
+ = {(S, I,Q,R) ∈ R : S ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0} is

positively invariant. System (1.1) can be written in the vector form

DαX(t) = H(z(t)).

Here, z(t) = (S(t), I(t), Q(t), R(t))>, and

H(z(t)) =


A− βS(t− τ)I(t− τ)− dS(t)

βS(t− τ)I(t− τ)− (d+ a+ γ + σ)I(t)
σI(t)− (d+ b+ p)Q(t)
γI(t) + pQ(t)− dR(t)

 ,
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z0 = (S(θ), I(θ), Q(θ), R(0))> ∈ R4
+. For that, we investigate the direction of the

vector field H(z(t)) on each coordinate space and see whether the vector field points
to the interior of R4

+. From (1.1), we have

DαS(t)|S=0 = A > 0,
DαI(t)|I=0 = 0,
DαQ(t)|Q=0 = σI(t) ≥ 0,
DαR(t)|R=0 = γI(t) + pQ(t) ≥ 0.

(3.1)

From Theorem 1 in [28], Lemma 6 [29] and Eq. (3.1), then the vector field H(z(t))
is interior of R4

+. The solution of (1.1) with initial conditions z0 ∈ R4
+; say z(t) =

z(t,X0), in such a way that z(t) ∈ R4
+.

Theorem 3.3 The set Ω = {(S, I,Q,R) ∈ R4
+|S+I+Q+R ≤ A

d
} is positively

invariant with respect to system (1.1).

Proof. Let (S(t), I(t), Q(t), R(t)) be the solution of system (1.1) with initial
condition (1.2). Set N(t) = S(t) + I(t) + Q(t) + R(t). From system (1.1), we can
obtain

DαN(t) = A− dN(t)− aI(t)
≤ A− dN(t).

Hence,
N(t) ≤ (−A+N(t))Eα(−dtα) + A.

Obviously, Eα(−dtα) ≥ 0. Hence, N(t) = S(t) + I(t) + Q(t) + R(t) ≤ A
d

when
S(0) + I(0) + Q(0) + R(0) ≤ A

d
. And Ω = {(S, I,Q,R) ∈ R4

+|S + I +Q + R ≤ A
d
}

is positively invariant with respect to system (1.1).

.4 Analysis of stability and Hopf bifurcation

The equilibria of system (1.1) are the points of intersections at which DαS(t) =
0, DαI(t) = 0, DαQ(t) = 0 and DαR(t) = 0. It is apparent that system (1.1)
always possesses a disease-free equilibrium E1(

A
d
, 0, 0, 0). In order to derive the

basic reproduction number R0 of system (1.1), we employ the next generation
matrix method as presented in [30].

If x = (I,Q,R)> then when τ equals zero, the original system can be expressed
as

dx

dt
= F(x)− V(x), (4.1)

where

F(x) =

 βSI
0
0

 ,
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V(x) =

 (d+ a+ γ + σ)I
−σI + (d+ b+ p)Q
−σI − pQ+ dR

 .

We can get

F =

 βA
d

0 0
0 0 0
0 0 0

 ,

V =

 µ+ δ + σ 0 0
−σ d+ b+ p 0
−γ −p d

 .

The next generation matrix for model (1.1) is

FV −1 =

 Aβ
d(γ+d+a+σ)

0 0

0 0 0
0 0 0

 .

The spectral radius ρ(FV −1) =
Aβ

d(γ + d+ a+ σ)
. According to Theorem 2 in

[30], the basic reproduction number of system (1.1) is

R0 =
Aβ

d(γ + d+ a+ σ)
.

Theorem 4.1 If R0 > 1, system (1.1) has a unique endemic equilibrium E∗.
If R0 < 1, there is no endemic equilibrium of system (1.1).

Proof. To obtain the endemic equilibrium E∗ of system (1.1), we need to im-
pose the right side of system (1.1) to be equal to 0. In other words, the equilibrium
E∗(S∗, I∗, Q∗, R∗) should be satisfied the following equations

A− βS∗I∗ − dS∗ = 0,
βS∗I∗ − (d+ a+ γ + σ)I∗ = 0,
σI∗ − (d+ b+ p)Q∗ = 0,
γI∗ + pQ∗ − dR∗ = 0.

(4.2)

From above, we can obtain

S∗ =
γ + d+ a+ σ

β
,Q∗ =

σ

d+ b+ p
I∗, R∗ =

γI∗ + pQ∗

d
(4.3)

and

I∗ =
d

β
(1− 1

R0

).
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It is obvious that S∗ > 0. When R0 > 1, I∗ > 0. Hence, Q∗ > 0, R∗ > 0. Then,
system (1.1) has a unique endemic equilibrium. And when R0 < 1, I∗ < 0, there is
no endemic equilibrium of system (1.1).

In the following, we will discuss the local asymptotical stability of the disease-
free equilibrium E0, the endemic equilibrium E∗ for system (1.1) and the existence
of Hopf bifurcation around the endemic equilibrium E∗.

To discuss the local asymptotical stability of system (1.1), we have to linearize
it. Let us consider the following coordinate transformation

x(t) = S(t)− S̄, y(t) = I(t)− Ī , z(t) = Q(t)− Q̄, w(t) = R(t)− R̄,

where (S̄, Ī , Q̄, R̄) denotes any equilibrium of system (1.1). So we can obtain the
corresponding linearized system is of the form

Dαx(t) = −dx(t)− βĪx(t− τ)− βS̄y(t− τ),
Dαy(t) = βĪx(t− τ) + βS̄y(t− τ)− (d+ a+ σ + γ)y(t),
Dαz(t) = σy(t)− (d+ b+ p)z(t),
Dαw(t) = γy(t) + pz(t)− dw(t).

(4.4)

Taking Laplace transform on both sides of (4.4), yields

sαS(s)− sα−1x(0) = −dS(s)− βĪe−sτ [S(s) +

∫ 0

−τ
e−stϕ1(t)dt]

−βS̄e−sτ [I(s) +

∫ 0

−τ
e−stϕ2(t)dt],

sαI(s)− sα−1y(0) = βS̄e−sτ [I(s) +

∫ 0

−τ
e−stϕ2(t)dt]

+βĪe−sτ [S(s) +

∫ 0

−τ
e−stϕ1(t)dt]− (d+ a+ σ + γ)I(s),

sαQ(s)− sα−1z(0) = σI(s)− (d+ b+ p)Q(s),
sαR(s)− sα−1w(0) = γI(s) + pQ(s)− dR(s).

(4.5)

Here, S(s), I(s), Q(s), R(s) are the Laplace transform of x(t), y(t), z(t), w(t),
respectively. The above system (4.5) can be written as follows

∆(s) ·


S(s)
I(s)
Q(s)
R(s)

 =


b1(s)
b2(s)
b3(s)
b4(s)

 ,

where

∆(s) =


sα + βĪe−λτ + d βS̄e−λτ 0 0

βĪe−λτ sα − βS̄e−λτ + (d+ s+ σ + γ) 0 0
0 −σ sα + d+ b+ p 0
0 −γ −p sα + d
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and

b1(s) = sα−1x(0)− βĪe−sτ
∫ 0

−τ
e−stϕ1(t)dt− βS̄e−sτ

∫ 0

−τ
e−stϕ2(t)dt,

b2(s) = sα−1y(0) + βĪe−sτ
∫ 0

−τ
e−stϕ1(t)dt+ βS̄e−sτ

∫ 0

−τ
e−stϕ2(t)dt,

b3(s) = sα−1z(0),
b4(s) = sα−1w(0).

Theorem 4.2 If R0 < 1, then the disease-free equilibrium E1 of system (1.1)
is locally asymptotically stable for all τ ≥ 0.

Proof. The characteristic matrix at E1(
A
d
, 0, 0, 0) is

∆1(s) =


sα + d βA

d
e−sτ 0 0

0 sα − βA
d
e−sτ + (d+ a+ σ + γ) 0 0

0 −σ sα + d+ b+ p 0
0 −γ −p sα + d

 .

Then the characteristic equation at the disease-free equilibrium E1(
A
d
, 0, 0, 0) is

(sα + d)2(sα + d+ b+ p)

[
sα + (d+ a+ σ + γ)− βA

d
e−sτ

]
= 0. (4.6)

When τ = 0, the characteristic equation can be translated into

(sα + d)2(sα + d+ b+ p)

[
sα + (d+ a+ σ + γ)− βA

d

]
= 0. (4.7)

Let sα = λ, Eq. (4.7) can be rewritten as (λ+d)2(λ+d+b+p)[λ+(d+a+σ+γ)−
βA
d

] = 0. Its characteristic root is λ1,2 = −d, λ3 = −(d+b+p), λ4 = βA
d
−(d+a+σ+

γ) = (R0−1)(d+a+σ+γ). Obviously, | arg(λ1)| = | arg(λ2)| = | arg(λ3)| = π > απ
2

.
| arg(λ4)| = π > απ

2
when the basic reproduction number R0 < 1. Hence, all the

eigenvalues λi of ∆1(s) satisfy | arg(λi)| = π > απ
2

, i = 1, 2, 3, 4. According to the
Lemma 2.2, the disease-free equilibrium E1 is locally asymptotically stable when
R0 < 1.

When τ 6= 0, since the first two factors of the left side of Eq. (4.7) do not
contain time delay τ , we only need to consider the third factor

sα − βA

d
e−sτ + (d+ a+ σ + γ) = 0. (4.8)

Assume s = iω = ω(cos π
2

+ i sin π
2
) (ω > 0), then s is substituted, in (4.8), we

get

(iω)α − βA

d
e−iωτ + (d+ a+ σ + γ) = 0. (4.9)
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Separating the imaginary parts and real parts, it leads to
ωα cos

απ

2
+ (d+ a+ σ + γ) =

βA

d
cosωτ,

ωα sin
απ

2
= −βA

d
sinωτ.

(4.10)

Squaring and adding both sides of this equation, we can obtain

ω2α + 2(d+ a+ σ + γ) cos
απ

2
ωα

+

(
d+ a+ σ + γ +

βA

d

)
(d+ a+ σ + γ)(1−R0) = 0. (4.11)

Obviously, 2(d + a + σ + γ) cos απ
2
≥ 0 and our assumption that R0 < 1, then

the Eq. (4.11) has no positive roots. Which ensures that Eq. (4.7) has no purely
imaginary roots if R0 < 1. According to Lemma 2.2, the equilibrium E1 is locally
asymptotically stable for any delay τ ≥ 0 if R0 < 1. The proof is completed.

Next, we discuss the local stability and bifurcation results at the endemic equi-
librium point E∗. When R0 > 1, the endemic equilibrium point E∗ exists. The
characteristic matrix at E∗ is

∆2(s) =


sα+ βI∗e−λτ+ d βS∗e−λτ 0 0

βI∗e−λτ sα− βS∗e−λτ+ (d+ s+ σ + γ) 0 0
0 −σ sα+ d+ b+ p 0
0 −γ −p sα+ d

 .

The associated characteristic equation of system (1.1) at E∗ can be described
as

s4α + κ1s
3α + κ2s

2α + κ3s
α + κ4 + (κ5s

3α + κ6s
2α + κ7s

α + κ8)e
−sτ = 0, (4.12)

where

κ1 = 4d+ b+ p+ γ + a+ σ,
κ2 = 3da+ ap+ 3bd+ ab+ 6d2 + 3dσ + 3dγ + pγ + bγ + σp+ 3pd+ σb,
κ3 = 2dσb+ 3d2γ + 2dσp+ 4d3 + 2dap+ 3d2a

+3d2σ + 2dγb+ 3d2b+ 3d2p+ 2dab+ 2dγp,
κ4 = d3p+ d3γ + d2ab+ d2σp+ d3σ + d4 + d2σb

+d2γb+ d2γp+ d2ap+ d3b+ d3a,
κ5 = βI∗ − βS∗,
κ6 = iβγ + I∗βσ + iβp− βS∗p− βSb+ I∗βb− 3βS∗d+ 3I∗βd+ iβa,
κ7 = I∗βσb+ 2I∗βad+ 2I∗βγd+ I∗βσpd2 + 2I∗βσd− 3d2βS∗ − 2βS∗pd

+3I∗β + 2I∗βpd+ I∗βab+ 2I∗βbd+ I∗βγp− 2dβS∗b+ I∗βap+ I∗βγb,
κ8 =−d3βS∗+I∗βγd2+I∗βabd− d2βS∗p+I∗βσbd+ I∗βγpd+I∗βd2p− d2βS∗b

+I∗βd2b+ I∗βσd2 + I∗βγbd+ I∗βad2 + I∗βapd+ I∗βd3 + I∗βσpd.
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Case 1. When τ = 0, Eq. (4.12) becomes

(sα)4 + (κ1 + κ5)(s
α)3 + (κ2 + κ6)(s

α)2 + (κ3 + κ7)s
α + κ4 + κ8 = 0.

On the basis of Routh-Hurwitz theorem, the endemic equilibrium point E∗ is
locally asymptotically stable if

κ1 + κ5 > 0, κ2 + κ6 > 0, κ3 + κ7 > 0, κ4 + κ8 > 0,
(κ1 + κ5)(κ2 + κ6)(κ3 + κ7) > (κ3 + κ7)

2 + (κ1 + κ5)
2(κ4 + κ8).

(4.13)

Case 2. When τ > 0, let s = iω = ω(cos π
2

+ i sin π
2
) (ω > 0) be a root of Eq.

(4.12). Substitute s in (4.12), we obtain

ω4α(cos 2απ + i sin 2απ) + κ1ω
3α(cos 3απ

2
+ i sin 3απ

2
)

+κ2ω
2α(cosαπ + i sinαπ) + κ3ω

α(cos απ
2

+ i sin απ
2

) + κ4
+[κ5ω

3α(cos 3απ
2

+ i sin 3απ
2

) + κ6ω
2α(cosαπ + i sinαπ)

+κ7ω
α(cos απ

2
+ i sin απ

2
) + κ8](cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts of (4), yields{
R2 cos(ωτ) + I2 sin(ωτ) = −R1,
I2 cos(ωτ)−R2 sin(ωτ) = −I1,

(4.14)

where

R1 = ω4α cos(2απ) + κ1ω
3α cos

(
3απ

2

)
+ κ2ω

2α cos(απ) + κ3ω
α cos

(απ
2

)
+ κ4,

R2 = κ5ω
3α cos

(
3απ

2

)
+ κ6ω

2α cos(απ) + κ7ω
α cos

(απ
2

)
+ κ8, (4.15)

I1 = ω4α sin(2απ) + κ1ω
3α sin

(
3απ

2

)
+ κ2ω

2α sin(απ) + κ3ω
α sin

(απ
2

)
,

I2 = κ5ω
3α sin

(
3απ

2

)
+ κ6ω

2α sin(απ) + κ7ω
α sin

(απ
2

)
.

From Eq. (4.14), we have

cos(ωτ) = −R1R1 + I1I2
R2

2 + I22
, F (ω),

sin(ωτ) =
R2I1 −R1I2
R2

2 + I22
, G(ω).

(4.16)

It is obvious that cos2(ωτ) + sin2(ωτ) = 1, and

ω8α +M+N = 0, (4.17)
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where M is a polynomial containing ω7α, ω6α, ω5α, ω4α, ω3α, ω2α, ωα, and N is a
constant.

Let

h(ω) = ω8α +M+N .

Suppose that N < 0. Thus, h(ω) has at least one positive root. The delay τ is
regarded as a bifurcation parameter. Let s(ω) = ξ(τ)+iω(τ) be the eigenvalue of ()
such that for some initial value of the bifurcation parameter τ0 we have ξ(τ0) = 0,
ω(τ0) = ω0. Without loss of generality, we assume ω(0) > 0. From (4.16), we can
conclude

τj =
1

ω0

[arccosF (ω) + 2jπ], j = 0, 1, 2, · · · ,

where

τ0 = min τj, j = 0, 1, 2, · · · .

It is imperative that the following lemma is useful and needed.

Lemma 4.1 If N < 0, then Hopf bifurcation occurs provided h′(ω0) 6= 0.

Proof. Differentiating both sides of Eq. (4.12) with respected to τ , it can be
obtained that

(4αs4α−1 + 3ακ1s
3α−1 + 2ακ2s

2α−1 + ακ3s
α−1)

ds

sτ
+(3κ5αs

3α−1 + 2ακ6s
2α−1 + ακ7s

α−1)e−sτ ds
sτ

+(κ5αs
3α + κ6s

2α + κ7s
α + κ8)e

−sτ (−τ ds
dτ
− s) = 0.

(4.18)

Hence, we can get

(
ds

dτ

)−1
=

4αs4α−1+ 3ακ1s
3α−1+ 2ακ2s

2α−1 + ακ3s
α−1

s(κ5αs3α + κ6s2α + κ7sα + κ8)e−sτ

+
(3κ5αs

3α−1+ 2ακ6s
2α−1+ ακ7s

α−1)e−sτ

s(κ5αs3α + κ6s2α + κ7sα + κ8)e−sτ
− τ

s

=
4αs4α−1 + 3ακ1s

3α−1 + 2ακ2s
2α−1 + ακ3s

α−1

s(κ5αs3α + κ6s2α + κ7sα + κ8)e−sτ

+
3κ5αs

3α−1 + 2ακ6s
2α−1 + ακ7s

α−1

s(κ5αs3α + κ6s2α + κ7sα + κ8)
− τ

s
. (4.19)
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Substituting s = iω0 into Eq. (4.19), we obtain

Re

[(
ds

dτ

)−1 ∣∣∣
τ=τ0

]

=
4α(iω0)

4α−1 + 3ακ1(iω0)
3α−1 + 2ακ2(iω0)

2α−1 + ακ3(iω0)
α−1

(iω0)(κ5α(iω0)3α + κ6(iω0)2α + κ7(iω0)α + κ8)e−sτ

+
3κ5αs

3α−1+ 2ακ6s
2α−1+ ακ7s

α−1

s(κ5αs3α + κ6s2α + κ7sα + κ8)
− τ

s

=
h′(ω0)

2ω0G
,

where

G =

(
κ1ω

3α
0 cos

(3α + 1)π

2
+ κ2ω

2α
0 cos

(2α + 1)π

2
+ κ3ω

α
0 cos

(α + 1)π

2

)2

+

(
κ1ω

3α
0 sin

(3α + 1)π

2
+ κ2ω

2α
0 sin

(2α + 1)π

2
+ κ3ω

α
0 sin

(α + 1)π

2
+ κ4

)2

.

Then,

sign

{
dRe(λ)

dτ

∣∣∣
τ=τ0

}
= sign

{
Re

[(
ds

dτ

)−1 ∣∣∣
τ=τ0

]}
= sign{h′(ω0)}.

Obviously, if h′(ω0) 6= 0 the transversality condition holds, and Hopf bifurcation
occurs at τ = τ0.

Theorem 4.3 When R0 > 1 and h′(ω0) 6= 0, the endemic equilibrium point
E∗ of system (1.1) is locally asymptotically stable if τ < τ0 and unstable if τ > τ0,
where τ0 = min{τj, j = 0, 1, 2, 3, · · · }.

.5 Numerical simulations

In this section, several illustrative numerical examples are presented to confirm the
theoretical results and to examine the dynamical behavior of system (1.1). From
Section 4, we can find that delay τ and fractional-order α are the important factors
which affect the convergence speed of solutions. We select parameters as follows

A = 10, β = 0.002, d = 0.01, γ = 0.2, p = 0.6, a = 0.01, b = 0.2, σ = 0.1

with initial conditions S(0) = 160, I(0) = 25, Q(0) = 3, R(0) = 720. We can
calculate R0 = 6.25 > 1. System (1.1) have three equilibria E1(1000, 0, 0, 0) and
E∗(160.00, 26.25, 3.24, 719.44). We only discuss the stability of E∗.

(1) α = 0.98 and τ = 3.
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Figure 1: Time evolution of all the population for the model (1.1) with α = 0.98

and τ = 3.0.

We can calculate τ ∗ = 9.68 from (4.14). Obviously, τ < τ ∗ = 8.23. From
Theorem 4.4, we can obtain that E∗ is locally asymptotically stable (See Fig. 1).

(2) α = 0.98 and τ = 10.1.

It is to see that τ > τ ∗ = 9.68. From Theorem 4.4, we can find that E∗ is
unstable and Hopf bifurcation occurs (See Fig. 2).

(3) α = 0.90 and τ = 10.1.

We can calculate τ ∗ = 12.32 and τ < τ ∗. Then E∗ is locally asymptotically
stable (See Fig. 3).
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Figure 2: Time evolution of all the population for the model (1.1) with α = 0.98

and τ = 10.1.
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Figure 3: Time evolution of all the population for the model (1.1) with α = 0.90

and τ = 10.1.
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.6 Conclusion

In this work, we studied a fractional-order SIQR epidemic model with delay for
COVID-19 pandemic. The dynamical behavior of system (1.1) is studied. Local
stability of the equilibria for system (1.1) and Hopf bifurcation are analyzed. The
disease-free equilibrium E1 of system (1.1) is locally asymptotically stable for all
τ ≥ 0 when R0 < 1. When R0 > 1 and τ = 0, the endemic equilibrium is locally
asymptotically stable. According to Theorem 4.3, when R0 > 1 and the conditions
of Theorem 4.3 satisfied, the stability of the endemic equilibrium changes at Hopf
bifurcation point τ ∗. To validate the accuracy of the theoretical analysis, suitable
parameters were chosen for numerical simulations. The results demonstrated that
the threshold of time delay was indeed a pivotal point in the Hopf bifurcation of
the fractional order COVID-19 epidemic model. The size of the time lag, given
the parameter values, is a crucial factor influencing the stability of the system and
directly affects the effectiveness of the regulation and control system in transition-
ing from a infected state to a healthy state. Moreover, the numerical simulation
revealed that variations in the fractional order led to changes in the critical value
of the Hopf bifurcation, further substantiating the efficacy of fractional order in
controlling the stability domain of the model.
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[26] Deng W.H., Li C.P., Lü J.H., Stability analysis of linear fractional diferential
system with multiple time delays, Nonlinear Dynamics, 2007, 48(4): 409-416.

[27] Li H.L., Zhang L., Hu C., Jiang Y.L., Teng Z.D., Dynamical analysis of a
fractional-order predator-prey model incorporating a prey refuge, Journal of
Applied Mathematics and Computing, 2017, 54(1-2): 435-449.

[28] Odibat Z.M., Shawagfeh N.T., Generalized Taylors formula, Applied Mathe-
matics and Computation, 2007, 186: 286-293.

[29] Boukhouima A., Hattaf K., Yousfi N., Dynamics of a fractional order HIV
infection model with specific functional response and cure rate, International
Journal of Differential Equations, 2017, 2017: 8372140.

[30] van den Driessche P., Watmough J., Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission, Mathe-
matical Biosciences, 2007, 180: 29-48.

.Competing interests

The authors declare that they have no competing interests.



20 Xueyong Zhou and Yaozong Deng

.Author’s contributions

Xueyong Zhou conceived the model and made the numerical simulations. Yaozong
Deng wrote the paper. All authors read and approved the manuscript.

.Acknowledgements

This work is sponsored by the Natural Science Foundation of Henan (222300420521)
and Nanhu Scholars Program for Young Scholars of XYNU.


	Introduction
	Preliminaries
	Basic results
	Analysis of stability and Hopf bifurcation
	Numerical simulations
	Conclusion

