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Abstract. A mathematical model is presented that describes the processes of pro-
pagation and transformation of coherent electromagnetic radiation in a multilayer
three-dimensional (3D) smoothly irregular integrated optical waveguide, called
the model of adiabatic guided modes. Its presentation and individual applications
in smoothly irregular integrated optical waveguides contain two short stories:

• two-dimensional evolution of guided modes is described;

• boundary conditions are formed on non-horizontal planes tangent to media
interfaces, which lead to the description of hybridization of guided modes
and other interesting phenomena.

The model of adiabatic guided modes generalizes the cross-section method (re-
ference waveguide method) with nonlocal boundary conditions for the transverse
guided mode operator in the reference waveguide cross section to the case of two-
dimensional evolution, leading to the description of a number of new effects.
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1 Introduction

The progress of photonics, integrated optics, and waveguide optoelectronics in the
last few decades have made it possible to achieve many important scientific results
(see, e.g., [1]–[28]). The relevance and significance of studies in these promising
areas are associated with both practical applications and prospects for the use of
the corresponding high-speed and low-energy devices [8, 9, 15, 18, 19, 22, 23, 24,
25, 26, 27].

In the 70s - 90s of the last century, the most important results in integra-
ted optics were obtained at the Department of Radiophysics, Peoples’ Friendship
University (UDN), at the Physical Institute, Academy of Sciences of the Soviet
Union, at the Institute of Radio Engineering and Electronics, Academy of Sciences
of the Soviet Union, at the Mogilev Branch of the Institute of Physics, Academy
of Sciences of the Belorussian Soviet Republic, and in a number of other research
centers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The active development of the new direction
of integrated optics in UDN contributed to the formulation and solution of a num-
ber of topical scientific and technical problems [2, 4, 8, 10, 11, 14, 20, 23]. By 1989,
one of these urgent and promising problems had been solved. As a result, a system
for controlled deposition of thin-film Lüneburg waveguide lenses was developed and
assembled [23]. During its test runs, some unsolved problems in the calculation and
diagnostics of integrated optical elements with a variable effective refractive index
were revealed.

As a result, the researchers faced the task of constructing a mathematical model
for the propagation and transformation of coherent electromagnetic radiation in a
multilayer three-dimensional (3D) smoothly irregular integrated optical waveguide,
which describes the interaction and interference of guided modes supported by
such a waveguide structure. In the papers by A.A. Egorov, K.P. Lovetsky, A.L.
Sevastianov, and L.A. Sevastianov [20, 23, 26, 28] such a mathematical model was
developed. The authors called it the model of adiabatic guided modes.

The adiabatic waveguide propagation of optical radiation in dielectric and fiber-
optic waveguides was previously described by the cross-section method in the pa-
pers by B.Z. Katsenelenbaum [1], V.V. Shevchenko [3], M.V. Fedoryuk [7], and in
integrated optical waveguides by the method of adiabatic guided modes by A.A.
Egorov, L.A. Sevastianov and their co-authors [20, 23, 26, 28]. The papers by
A.L. Sevastianov [29, 30] substantiated the model of adiabatic guided modes.

2 Setting the mathematical problem of adiabatic guided

modes description

Electromagnetic radiation propagating in an integrated optical waveguide satisfies
the vector Maxwell equations, which in the SI units have the form (see, e.g., [6, 13,
15]):

rot H =
∂D

∂t
, rot E =

∂B

∂t
(1)
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as well as the material equations

D = εE, B = µH, (2)

where ε = εrε0 is the medium permittivity; µ = µrµ0 is the medium permeability;
εr, µr are the relative permittivity and permeability, respectively; ε0 and µ0 are the
electric and magnetic constant, respectively.

In addition, the tangential boundary conditions at interfaces,

Hτ |1 = Hτ |2 , Eτ |1 = Eτ |2 , (3)

and the asymptotic boundary conditions at infinity,

|Eτ |x→±∞ < +∞, |Hτ |x→±∞ < +∞, (4)

should be satisfied.

3 The model of adiabatic guided modes in a multilayer

waveguide

Let us formulate the restrictions of the class of considered integrated optical (gene-
rally, dielectric) multilayer waveguides and electromagnetic radiation propagating
through them.

1. The electromagnetic radiation is optical and monochromatic with a given
wavelength λ ∈ [380; 780] nm.

2. The thickness of the guiding layer (core) of the basic thin-film waveguide is
comparable with the wavelength of the propagating monochromatic electro-
magnetic radiation, d ∼ λ.

3. The surface of the additional waveguide layer (x = h(y, z)) satisfies the follo-

wing limitations:

∣∣∣∣∂h∂y
∣∣∣∣ , ∣∣∣∣∂h∂z

∣∣∣∣� 1.

4. The integrated optical waveguide is a material medium consisting of dielectric
subdomains filling together all the three-dimensional space.

5. The permittivities of the subdomains are different and real-valued, and the
permeability equals the magnetic constant (vacuum permeability) everyw-
here.

6. The number of layers in the waveguide is limited by the computing facilities
and the required accuracy of the computations.

7. There are no external currents and charges. It follows that in the absence of
foreign currents and charges, the induced currents and charges are zero.
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8. We use a Cartesian system of coordinates introduced as follows: the interfaces
between dielectric media of the base three-layered waveguide are parallel to
the plane yOz. The space subdomains corresponding to coating and substrate
layer are infinite, the additional guiding layers are asymptotically parallel to
the yOz-plane. Therefore, ε = ε(x).

In the Cartesian coordinates, related to the geometry of the substrate (or three-
layered planar dielectric waveguide, underlying the smoothly irregular integrated
optical waveguide) the Maxwell equations with the above restrictions taken into
account have the form:

∂Hz

∂y
− ∂Hy

∂z
=
ε

c

∂Ex
∂t

,
∂Ez
∂y
− ∂Ey

∂z
= −µ

c

∂Hx

∂t
,

∂Hx

∂z
− ∂Hz

∂x
=
ε

c

∂Ey
∂t

,
∂Ex
∂z
− ∂Ez

∂x
= −µ

c

∂Hy

∂t
,

∂Hy

∂x
− ∂Hx

∂y
=
ε

c

∂Ez
∂t

,
∂Ey
∂x
− ∂Ex

∂y
= −µ

c

∂Hz

∂t
,

(5)

Note that variable x is fast and variables y, z are slow relative to the small
(dimensioned) parameter 1/ω. The solutions to Maxwell’s equations (5) approxi-
mate within the asymptotic method are sought in the form taking into account the
separation of slow and fast variables:

E(x, y, z, t) =
∞∑
s=0

Es(x; y, z)

(−iω)γ+s
exp{iωt− ik0ϕ(y, z)}, (6)

H(x, y, z, t) =
∞∑
s=0

Hs(x; y, z)

(−iω)γ+s
exp{iωt− ik0ϕ(y, z)}. (7)

Retention of zero- and first-order terms with respect to the small parameter in
the solution (6), (7) leads to the model of adiabatic guided modes (AGM) describing
the guided propagation of a polarized optical radiation through irregular segments
of a smoothly irregular (multilayer) optical waveguide. In regular segments, the
adiabatic guided modes transform into normal modes of a regular planar optical
waveguide.

In the notation Es(x; y, z), Hs(x; y, z) the separation of x by a semicolon denotes
the following assumptions:∥∥∥∥∂Es(x; y, z)

∂y

∥∥∥∥ , ∥∥∥∥∂Es(x; y, z)

∂z

∥∥∥∥ ∼ 1

ω

∥∥∥∥∂Es(x; y, z)

∂x

∥∥∥∥ , j = x, y, z (8)

and ∥∥∥∥∂Hs(x; y, z)

∂y

∥∥∥∥ , ∥∥∥∥∂Hs(x; y, z)

∂z

∥∥∥∥ ∼ 1

ω

∥∥∥∥∂Hs(x; y, z)

∂x

∥∥∥∥ , j = x, y, z (9)

where ‖ ‖ is the Hilbert norm of functions of x, and ω is the circular frequency of
the propagating monochromatic electromagnetic radiation.
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3.1 The AWG model equation in the zero-order approximation

In Refs. [20, 23, 28] it is shown that the zero-order approximation (in the asymptotic
approach) of the guided-wave solution of the Maxwell equations is given by the
following expressions:{

E(x, y, z, t)
H(x, y, z, t)

}
=

{
E0(x; y, z)
H0(x; y, z)

}
exp{iωt− iϕ(y, z)}, (10)

in this case

ε
∂Ey

0

∂x
= −ik0

(
∂ϕ

∂y

)(
∂ϕ

∂z

)
Hy

0 − ik0

(
εµ−

(
∂ϕ

∂y

)2
)
Hz

0 (11)

ε
∂Ez

0

∂x
= ik0

(
εµ−

(
∂ϕ

∂z

)2
)
Hy

0 + ik0

(
∂ϕ

∂z

)(
∂ϕ

∂y

)
Hz

0 (12)

µ
∂Hy

0

∂x
= ik0

(
∂ϕ

∂y

)(
∂ϕ

∂z

)
Ey

0 + ik0

(
εµ−

(
∂ϕ

∂y

)2
)
Ez

0 (13)

µ
∂Hz

0

∂x
= −ik0

(
εµ−

(
∂ϕ

∂z

)2
)
Ey

0 − ik0
(
∂ϕ

∂z

)(
∂ϕ

∂y

)
Ez

0 (14)

and

Ex
0 = −∂ϕ

∂y

1

ε
Hz

0 +
∂ϕ

∂z

1

ε
Hy

0 , (15)

Hx
0 =

∂ϕ

∂y

1

µ
Ez

0 −
∂ϕ

∂z

1

µ
Ey

0 , (16)

as well as (
∂ϕ

∂y
(y, z)

)2

+

(
∂ϕ

∂z
(y, z)

)2

= n2
eff (y, z). (17)

For a thin-film multilayer waveguide consisting of optically homogeneous layers,
the matching conditions are valid for the electromagnetic field at interfaces between
the media,

n× E− + n× E+ = 0, (18)

n×H− + n×H+ = 0, (19)

In addition, the asymptotic conditions hold

E0
y , E

0
z , H

0
y , H

0
z −−−−→

x→±∞
0. (20)

For any fixed (y, z), the system of Eqs. (11),(12),(13), (14),(20) defines a problem

of finding eigenvalues
(
~∇ϕ
)2
j

(y, z) and eigenfunctions
(
Ej
y, E

j
z , H

j
y , H

j
z

)T
(y, z), nor-

malized to unity: ∫ +∞

−∞

∣∣Ej
y

∣∣2 dx = 1,

∫ +∞

−∞

∣∣Hj
y

∣∣2 dx = 1. (21)
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3.2 The AWM model equations in the first-order approximation

We continue using the approach of asymptotic expansion in a small parameter and
arrive at a system of equations in the first-order approximation of the method [31]:

− ∂Ez1
∂x

+
ik0
ε

∂ϕ

∂z

(
∂ϕ

∂y
Hz

1 −
∂ϕ

∂z
Hy

1

)
+ ik0µH

y
1 = iω

∂Ex0
∂z

+
iω

ε

∂ϕ

∂z

(
∂Hy

0

∂z
− ∂Hz

0

∂y

)
(22)

∂Ey1
∂x
− ik0

ε

∂ϕ

∂y

(
∂ϕ

∂y
Hz

1 −
∂ϕ

∂z
Hy

1

)
+ ik0µH

z
1 = −iω∂E

x
0

∂y
− iω

ε

∂ϕ

∂y

(
∂Hy

0

∂z
− ∂Hz

0

∂y

)
(23)

− ∂Hz
1

∂x
+
ik0
µ

∂ϕ

∂z

(
∂ϕ

∂z
Ey1 −

∂ϕ

∂y
Ez1

)
− ik0εEy1 = iω

∂Hx
0

∂z
− iω

µ

∂ϕ

∂z

(
∂Ey0
∂z
− ∂Ez0

∂y

)
(24)

∂Hy
1

∂x
− ik0

µ

∂ϕ

∂y

(
∂ϕ

∂z
Ey1 −

∂ϕ

∂y
Ez1

)
− ik0εEz1 = −iω∂H

x
0

∂y
+
iω

µ

∂ϕ

∂y

(
∂Ey0
∂z
− ∂Ez0

∂y

)
(25)

Ex1 +
1

ε

(
∂ϕ

∂y
Hz

1 −
∂ϕ

∂z
Hy

1

)
=

1

ε

ω

k0

(
∂Hy

0

∂z
− ∂Hz

0

∂y

)
(26)

Hx
1 +

1

µ

(
∂ϕ

∂z
Ey1 −

∂ϕ

∂y
Ez1

)
= − 1

µ

ω

k0

(
∂Ey0
∂z
− ∂Ez0

∂y

)
(27)

The system of zero-order equations (11),(12), (13),(14),(15),(16) coincides with
the system of equations (22),(23), (24),(25),(26),(27), if we nullify the right-hand
sides (the contributions with the zero-order quantities).

E(x; y, z) = E0(x; y, z) +
i

ω
E1(x; y, z) (28)

H(x; y, z) = H0(x; y, z) +
i

ω
H1(x; y, z) (29)

These fields are necessarily complex-valued. Thus, the first-order contributions
introduce into the electromagnetic field expressions the characteristic features of
leaky modes. The obtained solutions allow analyzing a wide class of smoothly irre-
gular waveguiding structures, including those with a gradient profile of permittivity.

4 Propagation of two adiabatic guided modes through the

Lüneburg thin-film generalized waveguide lens

The Lüneburg thin-film generalized waveguide lens (TGWL) with radius R and
focal length F is implemented as a thickening (additional waveguide layer) of radius
R on a regular planar waveguide. The algorithm of calculating the adiabatic guided
mode includes the following stages (see, e.g., [23],[28]).

1. For each guided mode of a regular waveguide, the effective refractive index is
calculated by solving the system of equations:

β(r)/β = exp[ω(ρ, F )], (30)
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where ρ = rβ(r)/β and ω(ρ, F ) =
1

π

∫ 1

ρ

arcsin(x/F )

(x2 − ρ2)1/2
dx, using the Nelder-

mead deformed polyhedron simplex method, the integral being computed
using the Newton-Cotes formulas of the 8-th order.

2. The trajectories of 2D rays are calculated by solving the system of equations
d

ds

(
β(y, z)

dy

ds

)
=

∂β

∂y
(y, z),

d

ds

(
β(y, z)

dz

ds

)
=

∂β

∂z
(y, z) equivalent to the

system

dy

dz
= V,

dV

dz
= (1 + V 2)(B − AV ); A =

1

β

∂β

∂z
, B =

1

β

∂β

∂y
. (31)

Numerical integration of system (31) with the initial conditions yj(z0) = yj0,
Vj(z0) = 0, is performed by the Runge-Kutta-Fehlberg method of the 6-th
order with the accuracy-adapted step choice.

3. The Cauchy problem for system (31) is determined by the initial conditions
y(z0) = y0, V (z0) = V0. The current value of derivative V (z) specifies the
slope of the ray trajectory dy/dz relative to the Oz-axis, so that it also spe-
cifies a vector field (βy, βz)

T , tangent to the rays determined by Eqs. (31),

namely, βy = β
dy

ds
, βz = β

dy

ds
, i.e.

βy = βV (1 + V )1/2, βz = βV (1 + V 2)1/2. (32)

4. The system of ordinary differential equations (11)–(16) is solved using the
expansion in the system of fundamental solutions, which reduces the pro-
blem to a system of linear algebraic equations for the expansion coefficients
(A,B)T : M̂(β)(A,B)T = 0.

5. The conditions of solvability of the system of linear algebraic equations is
formulated as an algebraic transcendental equation, det(M̂(β)) = 0, or a
first-order nonlinear partial differential equation

FDisp(β, βy, βz;h, ∂h/∂y, ∂h/∂z;ns, nf , nl, nc, d) = 0. (33)

6. The partial differential equation (33) is solved using the mesh field (βy, βz)
T (yk, zk),

which finally yields {h, ∂h/∂y, ∂h/∂z}.

7. Using {h, ∂h/∂y, ∂h/∂z}, vertical distributions of the adiabatic guided mode
field at the mesh nodes (yk, zk) are calculated by Tikhonov regularization
method taking into account the energy conservation law and the Pointing
vector propagation law.

8. The phase incursion is calculated using Eqs. (10) on the mesh (yk, zk) by
numerical integration method.
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9. The total electromagnetic field of the adiabatic guided mode is calculated at
the mesh nodes (yk, zk) using Eqs. (10)–(16).

10. Calculations of items 1–9 are repeated for another adiabatic mode.

11. The total field of two (or more) adiabatic guided modes propagating through
the Lüneburg TGWL with radius R and focal length F is calculated.

5 Discussion and conclusion

There are at least two very important problems in integrated optics, where it is
necessary to take into account the vector nature of the fields. First, when synthe-
sizing various 3D connection elements (lenses, prisms, etc.), it allows implementing
high-efficiency energy transfer. Secondly, in an integrated optical RF spectrum
analyzer operating in real time, e.g., airborne. The purpose of such a spectrum
analyzer is to use an acousto-optic modulator to perform an instantaneous spectral
analysis of the incoming radar signal in order to determine, e.g., what is the given
aircraft tracked by (another aircraft, a missile, or a ground-based radar station).
The advantage of such a spectrum analyzer over an electronic one is that only a
few optical elements are required to perform functions that would require hundreds
of electronic elements. In this case, optical elements, as a rule, can be integrated
in one optical chip.

In the framework of the obtained analytical solution of the vector electrodyna-
mic problem in a smoothly irregular four-layer integrated optical 3D waveguide, the
passage of a guided mode (eigenmode) through the Lüneburg TGWL was studied
for the first time using numerical simulation. The calculation of the dispersion rela-
tion of a four-layer smoothly irregular integrated optical 3D waveguide is carried out
in the approximation of the reference waveguide method and in the approximation
of the adiabatic mode method, including the shift in the propagation constants of
the quasi-TE and quasi-TM modes taken into account. In the zero vector approxi-
mation, a full-aperture Lüneburg TGWL was synthesized and the electromagnetic
field profile at the focus of such a lens was calculated.
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