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.1 Introduction

Dynamical systems combining interacting species with epidemiology known as eco-
epidemiology. Many researchers have considered the eco-epidemiological models [1,
2, 3, 4, 5]. In [2], Wang et al considered an eco-epidemiological predator-prey model
with stage-structure and latency. In [4, 5], Zhou et al considered eco-epidemiological
models with delay.

In this paper, we will study a fractional-order eco-epidemiological model based
the model of Zhou et al [6] by adding the assumption that infected prey will get
recovery at constant rate. We make the following assumptions for our model (1):

(H1) We assume that the total prey population is divided into two classes,
namely susceptible prey denoted by S(t) and the infected prey denoted by I(t).
y(t) is the sizes of predator population.

(H2) We assume that A is the constant recruitment rate in the prey species. The
natural death rates of susceptible prey and infected prey are µ1 and µ2, respectively.

(H3) We assume that the disease is spread among the prey species only and
the disease is not genetically inherited, and an infected prey will get recovery at
constant rate γ. The incidence is assumed to be the simple mass action incidence
βSI, where β > 0 is the transmission rate of the disease in the prey.

(H4) Base on the fact that the infected individuals are less active and be caught
more easily [7] or the behavior of the infected individuals is modified [7], we assume
that predator can distinguish between infected and susceptible prey and the pre-
dator eats only the infected prey. And we assume that the functional response of
the predator to the prey density is modified Leslie-Gower Holling-type II schemes
(see [8, 9, 10]). The predator has a growth rate constant a2 > 0. The maximum
value of the per capita rate of I due to y is c1, and the maximum value of the per
capita rate of y due to I is c2. The extent to which environment protection to prey
I (respectively, to the predator y) is k1 (respectively, k2).

dS(t)

dt
= A− βS(t)I(t)− µ1S(t) + γI(t),

dI(t)

dt
= βS(t)I(t)− µ2I(t)− c1I(t)y(t)

I(t) + k1
− γI(t),

dy(t)

dt
= (α2 −

c2y(t)

I(t) + k2
)y(t).

(1)

Fractional calculus is an area of mathematics that addresses generalization of
the mathematical operations of differentiation and integration to arbitrary (non-
integer) order. The behavior of most biological systems has memory or after-effects.
The fractional order systems are more suitable than integer-order in biological mo-
delling due to the memory effects [11]. In the recent years, fractional calculus has
played a very important role in many fields such as mechanics, electricity, biology
[12, 13, 14, 15, 16].

Considering the fractional derivatives in the sense of Caputo derivative, and
assuming 0 < α ≤ 1, we have the following fractional order eco-epidemiological
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model corresponding to the model (1):

Dα
t S(t) = A− βS(t)I(t)− µ1S(t) + γI(t),

Dα
t I(t) = βS(t)I(t)− µ2I(t)− c1I(t)y(t)

I(t) + k1
− γI(t),

Dα
t y(t) = (α2 −

c2y(t)

I(t) + k2
)y(t).

(2)

The meaning of the parameters are similar to system (1). System (2) will be
analyzed with the following initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, y(0) = y0 ≥ 0. (3)

Denote
R3

+ = {((S, I, y)) ∈ R3, S ≥ 0, I ≥ 0, y ≥ 0}.
This paper is organized as follows. In Section 2, some useful definitions and

lemmas are presented. A detailed analysis on local stability of equilibrium of the
system (2) is carried out in Section 3. Simulations and numerical results are given
in Section 4. Conclusions in Section 5 close the paper.

.2 Preliminaries

In order to study dynamical behavior of the system (2), we firstly present the
definition of fractional-order integration and fractional-order differentiation and
some useful lemmas.

There are different forms of definitions of fractional order derivatives, such as,
Riemann-Liouville fractional derivative, Caputo fractional derivative, Atangana-
Baleanu derivative, Riesz derivative, and so on. It should be pointed out that
applied problems require definitions of fractional derivatives allowing the utilization
of physically or biology interpretable initial conditions. In fact, Caputo’s fractional
derivative exactly satisfies these demands.

Hence, in this paper, we will use Caputo’s definition, due to its convenience for
initial conditions of the differential equations.

Definition 1. [11] The fractional integral of order α > 0 of a function f : R+ → R
is given by

Iα =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt

provided the right side is pointwise defined on R+. Here and elsewhere in this paper,

Γ denotes the Gamma function.

Definition 2. [11] The Caputo fractional derivative of order α ∈ (n − 1, n) of a

continuous function f is given by

Dα
t f(x) = In−αDnf(x), D =

d

dt
.
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In particular, when 0 < α < 1, we have

Dα
t f(x) =

1

Γ(1− α)

∫ x

0

f ′(t)

(x− t)α
dt.

Lemma 1. (Generalized Mean Value Theorem [17]) Suppose that f(x) ∈ C[a, b] and

Dα
a f(x) ∈ C(a, b], for 0 < α ≤ 1, then we have

f(x) = f(a) +
1

Γ(α)
(Dα

a f)(ξ)(x− a)α

with a ≤ ξ ≤ x, ∀x ∈ (a, b].

Lemma 2. Suppose that f(x) ∈ C[a, b] and Dα
a f(x) ∈ C(a, b], for 0 < α ≤ 1.

If Dα
a f(x) ≥ 0, ∀x ∈ (a, b), then f(x) is nondecreasing for each x ∈ [a, b]. If

Dα
a f(x) ≤ 0, ∀x ∈ (a, b), then f(x) is nonincreasing for each x ∈ [a, b].

Lemma 3. [13] The equilibrium (x, y) of the following frictional-order differential

system {
Dα
t x(t) = f1(x, y), Dα

t y(t) = f2(x, y), α ∈ (0, 1],

x(0) = x0, y(0) = y0

is locally asymptotically stable if all the eigenvalues of the Jacobian matrix

J =

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)

evaluated at the equilibrium (x, y) satisfy the following condition:

| arg(λ)| > απ

2
.

.3 Dynamical behavior of model (2)

In this section, we will discuss the dynamical behavior of system (2).

Theorem 1. There is a unique solution X(t) = (S, I, y)> to system (2) with initial

condition (3) on t ≥ 0 and the solution will remain in R3
+.

Proof. The existence and uniqueness of the solution of (2)-(3) in (0,+∞) can be

obtained from Theorem 3.1 and Remark 3.2 in [18]. In the following, we will show

that the domain R3
+ is positively invariant. Firstly, we prove S(t) ≥ 0, ∀t ≥ 0,

assuming S(0) > 0 for t = 0. Suppose that S(t) ≥ 0, ∀t ≥ 0 in not true. Then,

there exists a t1 > 0 such that S(t) > 0 for t > t1. From the first equation of system

(2), we have

Dα
t S(t)|t=t1 = A > 0.
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According Lemma 1, we have S(t+1 ) > 0, which contradicts S(t+1 ) < 0, i.e., S(t) < 0

for t > t1. Therefore, we have S(t) ≥ 0, ∀t ≥ 0. Similarly, we can obtain that

I(t) ≥ 0, ∀t ≥ 0 and y(t) ≥ 0, ∀t ≥ 0. 2

In the following, we will prove the locally asymptotical stability of equilibria of

system (2).

The equilibria of the system (2) are solutions to the system:

Dα
t S(t) = Dα

t I(t) = Dα
t y(t) = 0.

System (2) possesses the following biologically feasible equilibria. E1(
A
µ1
, 0, 0);

E2(S2, 0, y2), where S2 = A
µ1

, y2 = α2k2
c2

; E3(S3, I3, 0), where S3 = γ+µ2
β

, I3 =
Aβ−γµ1−µ1µ2

βµ2
. Equilibria E1 and E2 exist for any parametric value, whereas E3

exists if Aβ > γµ1 + µ1µ2. We now seek the regions of the parameter space for

which model system (2) admits a feasible interior equilibrium (equilibria). Any

feasible equilibrium must correspond to a positive root I∗ of the quadratic equation

f(I) = a1I
2 + a2I + a3,

where
a1 = (c1α2 + c2µ2)β,

a2 = c1k2α2β + c2k1µ2β + α2c1µ1 + c2γµ1 + c2µ1µ2 − Aβc2,
a3 = α2c1k2µ1 + γc2k1µ1 + c2k1µ1µ2 − Aβc2k1.

for which, additionally,

y∗ =
α2

c2
(I∗ + k2), S

∗ =
1

β
(µ2 + γ +

c1y
∗

I∗ + k1
).

Let ∆ = a22 − 4a1a3.

Proposition 1. If a3 < 0, the system (2) has a unique positive equilibrium.

Proposition 2. If a2 > 0 and a3 > 0, there is no positive equilibrium of system (2).

Proposition 3. If a2 < 0, a3 > 0 and 4 > 0, there are two positive equilibria of

system (2).

Theorem 2. E1 is always unstable.

Proof. The Jacobian matrix of system (2) evaluated at E1 is given by

J(E1) =

 −µ1 −Aβ
µ1

0

0 Aβ
µ1
− µ2 − γ 0

0 0 α2

 . (4)

The eigenvalues can be determined by solving the characteristic equation det(J(E1−
λI3)) = 0, and they are λ1 = −µ1(< 0), λ2 = Aβ

µ1
− µ2− γ, and λ3 = α2(> 0). Note

that | arg(λ3)| = 0. Since the eigenvalue λ3 does not satisfy | arg(λ3)| > π
2

for all

α ∈ (0, 1], therefore E1(
A
µ1
, 0, 0) is always unstable. 2
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Theorem 3. If Aβc2k1 < µ1µ2c2k1+c1α2k2µ1+γµ1c2k1, the equilibrium E2 is locally

asymptotically stable. If Aβc2k1 > µ1µ2c2k1 + c1α2k2µ1 + γµ1c2k1, E2 is unstable.

Proof. The Jacobian matrix J(E2) is computed as

J(E2) =

 −µ1 −Aβ
µ1

+ γ 0

0 Aβ
µ1
− µ2 − γ − c1k2α2

c2k1
0

0
α2
2

c2
−α2

 . (5)

The corresponding eigenvalues are λ1 = −µ1(< 0), λ2 = Aβ
µ1
− µ2 − γ − c1k2α2

c2k1
, and

λ3 = −α2(> 0). Here, two cases arise depending on whether Aβc2k1 < µ1µ2c2k1 +

c1α2k2µ1 + γµ1c2k1 or Aβc2k1 > µ1µ2c2k1 + c1α2k2µ1 + γµ1c2k1 .

Case 1. If Aβc2k1 < µ1µ2c2k1 + c1α2k2µ1 + γµ1c2k1, then we can see that

| arg(λi)| = π > π
2
, α ∈ (0, 1], i = 1, 2, 3. Therefore, the equilibrium E1 is locally

asymptotically stable.

Case 2. If Aβc2k1 > µ1µ2c2k1 + c1α2k2µ1 + γµ1c2k1, then it is easy to see that

| arg(λ2)| = 0. In this case, E2 is unstable. 2

Theorem 4. E3 is always unstable when it exists.

Proof. The Jacobian matrix of system (2) evaluated at E1 is given by

J(E3) =

 −Aβ−γµ1
µ2

µ2 0
Aβ−γµ1−µ1µ2

µ2
0 − c1(Aβ−γµ1−µ1µ2)

Aβ+βk1µ2−γµ1−µ1µ2
0 0 α2

 . (6)

The characteristic equation of the Jacobian matrix J(E3) can be expressed as

(λ− α2)(λ
2 +

Aβ − γµ1

µ2

λ+ Aβ − γµ1 − µ1µ2) = 0.

Therefore, one eigenvalue is λ1 = α2 > 0 and | arg(λ1)| = 0. Hence, E3 is always

unstable. 2

For the positive equilibrium E∗, the Jacobian matrix is evaluated as

J(E∗) =

 −βI
∗ − µ1 −βS∗ + γ 0

βI∗ c1I∗y∗

(I∗+k1)2
− c1I∗

I∗+k1

0
α2
2

c2
−α2

 . (7)

The eigenvalues are the roots of the cubic equation

f(λ) = λ3 + A1λ
2 + A2λ+ A3 = 0, (8)
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where

A1 = α2 + βI∗ + µ1 − c1I∗y∗

(I∗+k1)2
,

A2 =
c1α2

2I
∗

c2(I∗+k1)
− α2c1I∗y∗

(I∗+k1)2
+ (βI∗ + µ1)(α2 − c1I∗y∗

(I∗+k1)2
)− βI∗(γ − βS∗),

A3 = (βI∗ + µ1)(
c1α2

2I
∗

c2(I∗+k1)
− α2c1I∗y∗

(I∗+k1)2
)− βI∗(γ − βS∗)α2.

The discriminant D(f) of the cubic polynomial f(λ) is

D(f) = −

∣∣∣∣∣∣∣∣∣∣∣

1 A1 A2 A3 0

0 1 A1 A2 A3

3 2A1 A2 0 0

0 3 2A1 A2 0

0 0 3 2A1 A2

∣∣∣∣∣∣∣∣∣∣∣
. (9)

On expansion, one gets D(f) = 18A1A2A3 + (A1A2)
2 − 4A3A

3
1 − 4A3

2 − 27A2
3.

Now considering the stability conditions in [12], the following theorem can be

stated.

Theorem 5. (1) If D(f) > 0, A1 > 0, A3 > 0 and A1A2 −A3 > 0, then the interior

equilibrium E∗ is locally asymptotically stable for 0 < α ≤ 1.

(2) If D(f) < 0, A1 ≥ 0, A2 ≥ 0, A3 > 0 and 0 < α ≤ 2
3
, then the interior

equilibrium E∗ is locally asymptotically stable.

(3) If D(f) < 0, A1 < 0, A2 < 0 and α > 2
3
, then the interior equilibrium E∗ is

unstable.

(4) If D(f) < 0, A1 > 0, A2 > 0, A1A2 = A3 and 0 < α ≤ 1, then the interior

equilibrium E∗ is locally asymptotically stable.

.4 Numerical simulations

In this section, we present some numerical simulations to illustrate the theoreti-

cal results and show the effects of fractional order of the system. We apply the

predictor-correctors scheme [19, 20], based on the Adams-Bashforth-Moulton algo-

rithm to solve the numerical solutions of the system (2).

Case 1. The parameters are A = 15, β = 0.2, µ1 = 0.0045, γ = 0.0032;

µ2 = 0.03, c1 = 0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, and α = 1, 0.95, 0.9

respectively. The system (2) exists one positive equilibrium E∗(5.957781933,

12.59991544, 30.19983088). By calculation, we can obtain λ1,2 = −0.2722693531 +

1.015456818i, λ3 = −1.580267871 around E∗. And | arg(λ1,2)| = 1.832759732 > απ
2

,

| arg(λ3)| = π > απ
2

. Hence, E∗ is locally asymptotically stable. See Fig. 1.
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Figure 1: E∗ is locally stable. A = 15, β = 0.2, µ1 = 0.0045, γ = 0.0032; µ2 = 0.03, c1 =

0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, α = 1, 0.95, 0.9
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Figure 2: E∗ is unstable. A = 15, β = 0.05, µ1 = 0.0045, γ = 0.0032; µ2 = 0.03, c1 =

0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, α = 1, 0.95, 0.9
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Figure 3: E∗ is from unstable to stable as α crease. A = 15, β = 0.05, µ1 = 0.0045, γ =

0.0032; µ2 = 0.03, c1 = 0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, α = 0.9, 0.85, 0.8

Case 2. The parameters are A = 15, β = 0.05, µ1 = 0.0045, γ = 0.0032;

µ2 = 0.03, c1 = 0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, and α = 1, 0.95, 0.9

respectively. The system (2) exists one positive equilibrium E∗(7.943844810,

12.59217925, 30.18435851). By calculation, we can obtain λ1,2 = −0.1536861791±
1.039185550i, λ3 = −0.6138627771 around E∗. And | arg(λ1,2)| = 1.341740339 <
απ
2

. Hence, E∗ is unstable. See Fig. 2.

Case 3. In this case, the parameters are A = 15, β = 0.05, µ1 = 0.0045,

γ = 0.0032; µ2 = 0.03, c1 = 0.56, k1 = 2, α2 = 0.6, c2 = 0.3, k2 = 2.5, and

α = 0.9, 0.85, 0.8 respectively. The system (2) exists one positive equilibrium

E∗(7.943844810, 12.59217925, 30.18435851). By calculation, we can get λ1,2 =

−0.1536861791± 1.039185550i, λ3 = −0.6138627771. When α = 0.9, | arg(λ1,2)| =
1.341740339 < απ

2
. And E∗ is unstable. When α = 0.85, 0.8, | arg(λ1,2)| =

1.341740339 > απ
2

, | arg(λ3)| = π > απ
2

. And E∗ is locally asymptotically stable.

From Fig. 3, we conclude that there exists α∗ ∈ (0, 1], E∗ is locally asymptotically

stable when α < α∗ and E∗ is unstable when α > α∗. See Fig. 3.
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.5 Conclusion

In this paper, we have studied a fractional order eco-epidemiological model with

modified Leslie-Gower Holling-type II schemes. We can get the equilibrium points

of the model. And we present the local asymptotic stability of the model. E1 and

E3 are always unstable. If Aβc2k1 < µ1µ2c2k1+c1α2k2µ1+γµ1c2k1, the equilibrium

E2 is locally asymptotically stable; If Aβc2k1 > µ1µ2c2k1+c1α2k2µ1+γµ1c2k1, E2 is

unstable. And the positive equilibrium (equilibria) is locally asymptotically stable

under some conditions. Some numerical simulations are provided to illustrate the

theoretical results and the effects of fractional order of the system. Numerical

simulations indicate fractional order α is a factor which affects the behavior of

solutions. There exists α∗ > 0 such that if α ∈ [0, α∗) the equilibrium point is

asymptotically stable. If α∗ < α, then the equilibrium point becomes unstable.

That is to say, the system (2) undergoes a Hopf bifurcation at the equilibrium E∗

when the fractional order α passes through the critical value α∗.
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