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Abstract. We explore recent estimations of the Hubble parameter H depending
on redshift z, which include 31 H(z) data points measured from differential ages
of galaxies and 26 data points, obtained with other methods. We describe these
data together with Union 2.1 observations of Type Ia supernovae and observed pa-
rameters of baryon acoustic oscillations with 2 cosmological models: the standard
cold dark matter model with the Λ term (ΛCDM) and the model with generali-
zed Chaplygin gas (GCG). For these models with different sets of H(z) data we
calculate two-parameter and one-parameter distributions of χ2 functions for all
observed effects, estimate optimal values of model parameters and their 1σ errors.
For both considered models the results appeared to be strongly depending on a
choice of Hubble parameter data sets if we use all 57 H(z) data points or only 31
data points from differential ages. This strong dependence can be explained in
connection with 4 H(z) data points with high redshifts z > 2.

Keywords: cosmological model, Chaplygin gas, Hubble parameter, Type Ia su-
pernovae, baryon acoustic oscillations

MSC numbers: 83F05,83B05

c©The author(s) 2018. Published by Tver State University, Tver, Russia

https://doi.org/10.26456/mmg/2018-611


2 G. S. Sharov, V. O. Vasiliev

.1 Introduction

The latest astronomical observations and their astrophysical interpretation [1] let
cosmologists conclude that our Universe demonstrates accelerated expansion and
it contains ' 4% of visible baryonic matter, about 26% of cold dark matter and
' 70% of dark energy (DE). The visible and dark matter have properties of cold
dust with close to zero pressure. However dark energy has another equation of
state with large negative pressure pDE close to its energy density −ρDE with minus
sign. Such a form of matter is considered as a source of the current cosmological
acceleration, it helps us to construct a model that can describe all available now
observational data and restrictions [1, 2, 3, 4].

The simplest way to modify the Einstein theory of gravitation and to include
dark energy with the mentioned properties is to add the Λ term into the Ein-
stein equations. In this case cosmological solutions can demonstrate accelerated
expansion. The resulting dynamical equations may be also obtained, if we add
the dark energy component with the equation of state pDE = −ρDE to the usual
visible matter and cold dark matter components. This cosmological model is called
ΛCDM (the Λ term with cold dark matter), it is now the most popular and usually
considered as the standard model in interpretation of observational data [1, 2, 3].

However, the ΛCDM model has some problems, in particular, vague nature of
dark energy and dark matter, the fine tuning problem for the small observed va-
lue of Λ and the coincidence problem with surprising proximity of DE and matter
contribution in total energy balance nowadays [5, 6]. Due to these reasons cos-
mologists suggest a lot of alternative models (see reviews [5, 6, 7]), in particular,
scenarios with nontrivial equations of state [8, 9, 10, 11], with interaction between
dark components [12, 13, 14, 15], with F (R) Lagrangian [16, 17, 18], additional
space dimensions [19] and many others.

In particular, in this paper together with the ΛCDM model we consider the
model with generalized Chaplygin gas (GCG) [8, 9, 10, 11]. In this model two
dark fluids — dark energy and dark matter are unified and represented as one
dark component (generalized Chaplygin gas) with the following equation of state
connecting energy density ρg and pressure pg:

pg = −B ρ−αg . (1)

Here B and α are positive constants. This fluid generalizes the classical Chaplygin
gas [8] with the equation of state p = const/ρ.

For the models ΛCDM and GCG in this paper we calculate limitations on model
parameters determined from available recent observations including the Type Ia
supernovae data (SN Ia) from Union 2.1 satellite [4], observable parameters baryon
acoustic oscillations (BAO) and we pay special attention to different data sets of
the Hubble parameter estimations H(z).

Type Ia supernovae are usually considered as standard candles in the Universe,
because they give possibility for each event to determine its epoch and the distance
(luminosity distance) to this object. Supernova is an exploding star with huge
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energy release, creating a shock wave on the expanding shell [20]. They are observed
in rather far galaxies because of their giant luminosity. All supernovae are classified
in correspondence with time dependence of the their brightness (the light curve)
and their spectrum. In particular, stars of Type I have hydrogen-deficient optical
spectrum and they belong to Type Ia subdivision, if they also have strong absorption
near the silicon line 615 nm. For Type Ia supernovae astronomers can definitely
determine their luminosity distances from light curves. In this paper Sect. 3 we use
the Union 2.1 compilation [4] with 580 SN Ia.

The observable effect of baryon acoustic oscillations (BAO) is generated by
acoustic waves with ions (baryons), which propagated in the relativistic plasma
before the recombination epoch and stopped after the drag era corresponding to
zd ' 1059.3 [1]. This effect is observed as disturbances (a bump) in the correlation
function of the galaxy distribution at the sound horizon scale rs(zd) [1, 21]. In
Sect. 3 we analyze two types of observational manifestations the BAO effect from
Refs. [22] – [39], in particular, estimations of the Hubble parameterH(z) for different
redshifts z [28] – [39].

The Hubble parameter H is the logarithmic derivative of the scale factor a with
respect to time t, redshift z is also expressed via a

H =
ȧ

a
, z =

a0

a
− 1 =

1

a
− 1, (2)

if we choose here and below the value a nowadays: a0 = a(t0) = 1.

The Hubble parameter H(z) as the function of z may be estimated with different
methods: in addition to the mentioned BAO effects [28] – [39] (26 data points) we
also have the H(z) data measured from differential ages of galaxies [40] – [46] (31
data points are tabulated Sect. 3).

In this paper we compare different approaches in choosing H(z) data, make
calculations with all 57 H(z) data points or only 31 points from differential ages and
demonstrate for 2 popular cosmological models ΛCDM and GCG that predictions
of optimal model parameters strongly depend on a considered Hubble parameter
data set.

In Sect. 2 we make a brief review of the models ΛCDM and GCG and their
dynamics, in Sect. 3 describe observational data and in Sect. 4 we demonstrate and
analyze the results of our calculations.

.2 Models

For the ΛCDM model and the model with generalized Chaplygin gas (GCG) the
dynamical equations are deduced from the Einstein equations for the Robertson-
Walker metric with the curvature sign k

ds2 = −dt2 + a2(t)
[
(1− kr2)−1dr2 + r2dΩ

]
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and may be reduced to the system

3
ȧ2 + k

a2
= 8πGρ+ Λ, (3)

ρ̇ = −3
ȧ

a
(ρ+ p). (4)

Here the dot denotes the time derivative, ρ and p are correspondingly the energy
density and pressure of all matter, G is the Newtonian gravitational constant, the
constant Λ equals zero for the GCG model, the speed of light c = 1. Eq. (4) is the
consequence of the continuity condition ∇µT

µ
ν = 0.

For both considered models we can neglect the fraction of relativistic mat-
ter (radiation and neutrinos), because the radiation-matter ratio is rather small
ρr/ρm ' 3 · 10−4 [1] for observable values z ≤ 2.36.

In the ΛCDM model baryons and dark matter may be considered as one com-
ponent with density ρ = ρb + ρdm that behaves like dust because of zero pressure
p = 0. In this case we use the solution ρ/ρ0 = (a/a0)−3 of Eq. (4) and rewrite the
Friedmann equation (3) in the form

H2

H2
0

= Ωma
−3 + ΩΛ + Ωka

−2 = Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2. (5)

We divided Eq. (3) by 3H2
0 , used Eq. (2) and the following notations for the present

time fractions of matter, dark energy (Λ term) and curvature correspondingly:

Ωm =
8πGρ(t0)

3H2
0

, ΩΛ =
Λ

3H2
0

, Ωk = − k

H2
0

. (6)

These values are connected by the equality

Ωm + ΩΛ + Ωk = 1, (7)

resulting from Eq. (5) if we fix t = t0. Thus, in description of the mentioned
observational data the ΛCDM model has 3 independent parameters: H0, Ωm and
ΩΛ (or Ωk).

The GCG model includes two matter components: baryons and the generalized
Chaplygin gas, the common density is ρ = ρb + ρg. Unlike the ΛCDM in the GCG
model one should separately consider baryonic matter (it may include some part of
cold dark matter) and introduce the corresponding fraction

Ωb =
8πGρb(t0)

3H2
0

as an additional model parameter. However in Ref. [11] we demonstrated, that
results of calculations very weakly depend on Ωb. So in this paper we consider the
simplified model with one (gas) component and suppose Ωb = 0 or ρ = ρg. In
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this case one can substitute the equation of state (1) into Eq. (4), integrate it and
obtain the following consequence of the Friedmann equation (3) [9, 10, 11]:

H2

H2
0

= Ωka
−2 + (1− Ωk)

[
Bs + (1−Bs) a

−3(1+α)
]1/(1+α)

. (8)

Here the dimensionless parameter Bs = Bρ−1−α
0 is used instead of B. If we ex-

clude the mentioned above parameter Ωb, the GCG model will have 4 independent
parameters: α, Bs, Ωk and H0.

.3 Observational data

3.1 Supernovae Ia data

In Sect. 1 we briefly mentioned the observational data under investigation an here
we describe details. For Type Ia Supernovae (SN Ia) we use NSN = 580 data points
from the table [4] after the Union 2.1 satellite investigation. This compilation
provides observed (estimated) values of distance moduli µi = µobsi for redshifts zi
in the interval 0 < zi ≤ 1.41. We fit free parameters of our models, when compare
µobsi with theoretical values µth(zi) of the distance moduli, which are logarithms

µthi = µ(DL) = 5 log10

(
DL/10pc

)
of the luminosity distance [1, 5]:

DL(z) =
c (1 + z)

H0

Sk

(
H0

z∫
0

dz̃

H(z̃)

)
, Sk(x) =


sinh

(
x
√

Ωk

)/√
Ωk, Ωk > 0,

x, Ωk = 0,

sin
(
x
√
|Ωk|

)/√
|Ωk|, Ωk < 0.

(9)
For a cosmological model with theoretical value H(z) (5) or (8) depending on

model parameters p1, p2, . . . we calculate the distance DL(z) and the corresponding
χ2 function, that measures differences between the SN Ia observational data and
predictions of a model:

χ2
SN(p1, p2, . . . ) = min

H0

NSN∑
i,j=1

∆µi
(
C−1
SN

)
ij

∆µj, (10)

where ∆µi = µth(zi, p1, . . . )− µobsi , CSN is the 580× 580 covariance matrix [4]. For
the Union 2.1 data [4] the standard marginalization over the nuisance parameter
H0 is required [11], it is made as the minimum over H0 in the expression (10).

3.2 BAO data

For baryon acoustic oscillations (BAO) we take into account the values dz(zi) [21]

dz(z) =
rs(zd)

DV (z)
, DV (z) =

[
czD2

L(z)

(1 + z)2H(z)

]1/3

. (11)
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They were extracted for redshifts (redshift ranges) z = zi from a peak in the
correlation function of the galaxy distribution at the comoving sound horizon scale
rs(zd). The value zd corresponds to decoupling of photons, for the sound horizon
scale rs(zd) here we use the following fitting formula [11]

rs(zd) =
(rd · h)fid

h
, (rd ·h)fid = 104.57 Mpc, h =

H0

100 km/(s ·Mpc)
, (12)

providing true h dependence of rd. The value (rd · h)fid = 104.57± 1.44 Mpc is the
best fit for the ΛCDM model [11].

In our calculations we use NBAO = 26 BAO data points for dz(z) (11) from
Refs. [22] – [33], tabulated here in Table 1. We add 9 new points from Ref. [33] to
17 ones, which were used earlier in Refs. [10, 11, 14, 15, 18]. We use the covariance
matrix Cd for correlated data from Refs. [22, 25] described in detail in Ref. [11]. So
the χ2 function for the value (11) yields

χ2
BAO(p1, p2, . . . ) = ∆d · C−1

d (∆d)T , ∆di = dobsz (zi)− dthz (zi). (13)

Table 1: Values dz(z) = rs(zd)/DV (z) (11) with errors and references

z dz(z) σd Refs z dz(z) σd Refs

0.106 0.336 0.015 [24] 0.44 0.0916 0.0071 [25]

0.15 0.2232 0.0084 [27] 0.44 0.0874 0.0010 [33]

0.20 0.1905 0.0061 [22] 0.48 0.0816 0.0009 [33]

0.275 0.1390 0.0037 [22] 0.52 0.0786 0.0009 [33]

0.278 0.1394 0.0049 [23] 0.56 0.0741 0.0008 [33]

0.31 0.1222 0.0021 [33] 0.57 0.0739 0.0043 [29]

0.314 0.1239 0.0033 [25] 0.57 0.0726 0.0014 [32]

0.32 0.1181 0.0026 [32] 0.59 0.0711 0.0010 [33]

0.35 0.1097 0.0036 [22] 0.60 0.0726 0.0034 [25]

0.35 0.1126 0.0022 [26] 0.64 0.0675 0.0011 [33]

0.35 0.1161 0.0146 [28] 0.73 0.0592 0.0032 [25]

0.36 0.1053 0.0018 [33] 2.34 0.0320 0.0021 [31]

0.40 0.0949 0.0014 [33] 2.36 0.0329 0.0017 [30]

Unlike Refs. [11, 14, 15, 18] we do not use in this paper the observational value [21]

A(z) =
H0

√
Ωm

cz
DV (z),

because it essentially depends on Ωm, however Ωm is not the model parameter for
the GCG model (see Table 2).
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3.3 H(z) data

The Hubble parameter parameter values H at certain redshifts z can be measured
with two methods: (1) extraction H(z) from line-of-sight BAO data [28] – [39] in-
cluding analysis of correlation functions of luminous red galaxies [28, 37], and (2)
H(z) estimations from differential ages ∆t of galaxies (DA method) [40] – [46] via
Eq. (2) and the following relation:

H(z) =
ȧ

a
= − 1

1 + z

dz

dt
' − 1

1 + z

∆z

∆t
.

The maximal set with NH = 57 recent estimations of H(z) is shown in Fig. 1
and in Table 3 below, it includes 31 data points measured with DA method (the left
side) and 26 data points (the right side), obtained with BAO and other methods.
The χ2 function for the H(z) data is

χ2
H(p1, p2, . . . ) =

NH∑
i=1

[
Hi −H th(zi, p1, p2, . . . )

]2
σ2
H,i

. (14)

In papers [14, 18] we used only NH = 30 H(z) data points estimated from
DA method to avoid additional correlation with the BAO data from Table 1. This
consideration should be taken into account in the present paper: in the next section
we calculate separately the χ2 function with NH = 31 DA data points from the left
column of Table 3 (30 points from Refs. [14, 18] and the recent point from Ref. [46])
and compare these results with the full H(z) data from Table 3 with NH = 57 data
points.

In Fig. 1 the H(z) data points from Table 3 estimated with DA and BAO
methods are shown as correspondingly red stars and cyan diamonds. The lines
demonstrate the best fitted H(z) dependence with the optimal parameters from
Table 2 for the ΛCDM and GCG models with 57 and 31 H(z) data points.

.4 Results of analysis

For any cosmological model we investigate the space of its model parameters p1, p2, . . .
(they are Ωm, ΩΛ, H0 for the ΛCDM and α, Bs, Ωk, H0 for the GCG model) and
search the optimal values of these parameters, which yield the most successful des-
cription of the observational data from Sect. 3. To achieve this purpose, for any
set of parameters p1, p2, . . . we use the dependence H(z) (5) or (8), calculate the
integral in Eq. (9), the distances DL = Dth

L (z) and Dth
V (z) (11), the values µth, dthz ,

the χ2 functions χ2
SN (10), χ2

BAO (13), χ2
H (14) and the summarized function

χ2
tot = χ2

SN + χ2
BAO + χ2

H . (15)

We search minima of the functions χ2
H and χ2

tot in the parameter spaces of a
model in the two mentioned variants of the H(z) data sets: with all NH = 57
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Figure 1: H(z) data from Table 3, stars and diamonds denote data points cor-

respondingly from DA and BAO methods. The lines are the best fitted for the

ΛCDM and GCG models with 57 and 31 H(z) data points.

data points from Table 3 and with only NH = 31 data points from Refs. [40] – [46],
estimated via the DA method.

For both considered models we calculate two-parameter distributions of minχ2
tot

in planes of two model parameters, for example,

mχ
tot(p1, p2) = min

p3,...
χ2
tot(p1, p2, p3, . . . ). (16)

We use this functions to determine one-parameter distributions and the correspon-
ding likelihood functions:

mχ
tot(pj) = min

other pk
χ2
tot(p1, . . . ), Ltot(pj) = exp

[
− mχ

tot(pj)−mabs

2

]
. (17)

Here mabs is the absolute minimum of χ2
tot.

The results of these calculations for the ΛCDM model with three independent
parameters Ωm, ΩΛ and H0 are presented in Figs. 2, 3 and in Table 2. In the
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top-left panel of Fig. 2 we draw the contour plots at 1σ (68.27%), 2σ (95.45%) and
3σ (99.73%) confidence level for the two-parameter distributions (16) of χ2

tot in the
(Ωm,ΩΛ) plane. The green filled contours describe the mχ

tot(Ωm,ΩΛ) function for
all 57 H(z) data points, the magenta contours present the case with 31 DA H(z)
data points. Here the function (16) is

mχ
tot(Ωm,ΩΛ) = min

H0

χ2
tot(Ωm,ΩΛ, H0). (18)

Ω
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Figure 2: The ΛCDM model: 1σ, 2σ and 3σ contour plots for two-parameter dis-

tributions mχ
tot(Ωm,ΩΛ) are drawn in (Ωm,ΩΛ) plane for 57 and 31 H(z) data points

in comparison with contours for min
H0

χ2
H (the top-right panel). The corresponding

one-parameter distributions mχ
tot(Ωm) and mχ

H(Ωm) are in the bottom panels.

In the top-right panel of Fig. 2 we compare the mentioned contours for χ2
tot (with

the same colors) and the similar contours for the function χ2
H (14), more correctly,

mχ
H(Ωm,ΩΛ) = min

H0

χ2
H(Ωm,ΩΛ, H0).

This distribution includes only H(z) data.
The green circles and magenta stars in Fig. 2 denote the minimum points of

mχ
tot(Ωm,ΩΛ) (and, naturally, for χ2

tot) correspondingly for 57 and 31 H(z) data
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points. Their coordinates (the optimal values of parameters) are tabulated in Ta-
ble 2. In the same way, the minimum points for χ2

H are shown in the top-right
panel as the deep green square and brown hexagram.

In the bottom panels of Fig. 2 we compare the one-parameter distributions (17)
mχ
tot(Ωm) and mχ

H(Ωm) = min
ΩΛ

mχ
H(Ωm,ΩΛ). These distributions and the correspon-

ding likelihood functions (17) determine 1σ estimates in Table 2 (for χ2
tot).

In Fig. 2 we see the interesting phenomenon: the optimal values of parameters
Ωm, ΩΛ (and positions of minimum points for χ2) are essentially different for the
two considered cases with 57 and 31 H(z) data points. This divergence takes
place for χ2

tot (the left panels in Fig. 2), for example, these estimations for Ωm are
correspondingly Ωm = 0.282 ± 0.021 and Ωm = 0.349 ± 0.041 (see Table 2): the
last value 0.349 is beyond 2σ confidence level for the NH = 57 case. However for
χ2
H this divergence is stronger, the correspondent estimations are Ωm = 0.227+0.036

−0.041

(for NH = 57) and Ωm = 0.359+0.197
−0.232 (for NH = 31). This is natural, because the

summands χ2
SN + χ2

BAO in χ2
tot moderate this effect.

Table 2: Optimal values and 1σ estimates of model parameters

Model minχ2
tot AIC H0 Ωk other parameters

ΛCDM 610.31 616.31 71.35+0.63
−0.62 −0.085± 0.048 Ωm = 0.282± 0.021,

57 H(z) ΩΛ = 0.803± 0.028

ΛCDM 588.96 594.96 71.77+1.70
−1.69 −0.224+0.085

−0.084 Ωm = 0.349± 0.041,

31 H(z) ΩΛ = 0.875± 0.045

GCG 609.94 617.94 71.68+0.82
−0.83 −0.192+0.188

−0.170 α = −0.124+0.235
−0.138,

57 H(z) Bs = 0.705+0.065
−0.044

GCG 587.93 595.93 70.46+2.16
−2.51 +0.019+0.541

−0.255 α = 0.647+3.25
−0.64,

31 H(z) Bs = 0.826+0.284
−0.111

Below we concentrate on the more relevant summarized function χ2
tot. In Fig. 3

we present other two- and one-parameter distributions of χ2
tot and the likelihood

functions for the ΛCDM model. In particular, in the top-right panel the contour
plots for mχ

tot(Ωk, H0) = min
Ωm

χ2
tot are shown for the cases NH = 57 and NH = 31 in

the same notations. In these calculation we consider the curvature fraction Ωk as
an independent parameter (together with Ωm, H0), the fraction ΩΛ is expressed via
Eq. (7): ΩΛ = 1− Ωm − Ωk.

The two-parameter distributions (18) mχ
tot(Ωm,ΩΛ) for NH = 57 and 31 in

the top-right panel of Figs. 2, 3 let us calculate the one-parameter distributions
mχ
tot(Ωm), mχ

tot(ΩΛ) and the likelihood functions (17) Ltot(Ωm), Ltot(ΩΛ) shown in
the middle and bottom panels of Fig. 3. The functions Ltot(H0) are deduces from
the two-parameter distributions in the (Ωk, H0) plane.
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Figure 3: The ΛCDM model with 57 and 31 H(z) data points: contour plots in 2

planes, one-parameter distributions and likelihood functions.

The best fitted values of minχ2
tot and the model parameters Ωm, ΩΛ, Ωk, H0 for

the ΛCDM model are presented in Table 2 for the cases NH = 57 and NH = 31. The
1σ errors are calculated from the correspondent likelihood functions (17) Ltot(pi).
We should emphasize, that the numberNp of model parameters is essential, when we
comrade different models. So we also use the Akaike information criterion [11, 47]

AIC = minχ2
tot + 2Np. (19)

Here Np = 3 for the ΛCDM model.
The similar estimations for the ΛCDM model were made in many papers, in

particular, in Refs. [1, 2, 3, 11, 47, 48, 49] for describing the Type Ia supernovae,
H(z), BAO and other data in various combinations. One can observe the following
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effect (connected with the described above): the estimations of Ωm, ΩΛ, Ωk and
H0 in differen papers essentially depend a chosen H(z) data set. For example, the
authors of Refs. [49] used the χ2

H function with NH = 41 data points from both DA
and BAO methods and calculated Ωm = 0.237± 0.051, ΩΛ = 0.66± 0.20. However,
when they excluded 3 data points [30, 31, 36] with z ≥ 2.3, they obtained the
enhanced values for both parameters Ωm = 0.40+0.18

−0.14, ΩΛ = 0.92+0.34
−0.23 (compare with

our results for χ2
H in Fig. 2).
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Figure 4: The GCG model with NH = 57 (blue) and NH = 31 (red): two-

parameter, one-parameter distributions and likelihood functions for χ2
tot.

If we compare our results for the ΛCDM model with the latest Planck data [1]
(Ωm = 0.308 ± 0.012, ΩΛ = 0.692 ± 0.012, Ωk = −0.005+0.016

−0.017, H0 = 67.8 ± 0.9
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Figure 5: Comparison of the two-parameter distributions minχ2
tot(Ωk, H0) for the ΛCDM

and GCG models in the plane (Ωk, H0) of their common parameters for the cases with

57 and 31 H(z) data points (the top-left panel). The corresponding one-parameter dis-

tributions are in other panels. Notations correspond to the previous figures.

km c−1Mpc−1), we will find some tension for ΩΛ, Omegak in the case NH = 31 and
for H0 in both cases because of too low estimation of H0 in Ref. [1]).

The influence of a chosen H(z) data set takes place not only for the ΛCDM
model. One can see in Fig. 4 and in Table 2, that for the GCG model this influence
is even more strong. In the top panels we demonstrate the contour plots for two-
parameter distributions (16) of χ2

tot in the (α,Bs) and (Ωk, Bs) planes for the cases
NH = 57 (blue filled contours) and NH = 31 (red contours). In particular, the
two-parameter distributions (16) in the top-left panel are

mχ
tot(α,Bs) = min

Ωk,H0

χ2
tot(α,Bs,Ωk, H0).

The circles and stars show the points of minima for χ2
tot. The similar two-parameter

contour plots for the GCG model in the (Ωk, H0) plane are drawn in Fig. 5.
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The one-parameter distributions mχ
tot(α), mχ

tot(Bs), m
χ
tot(Ωk) and the correspon-

ding likelihood functions (17) Ltot(pi) are shown in the middle and bottom panels
of Fig. 4.

Fig. 4 and Table 2 demonstrate, that for the GCG model the best fitted values
of α, Bs, Ωk strongly depend on a Hubble parameter data: NH = 57 (all data
points) or NH = 31 (only from DA method). In part5icular, the best fitted values
α ' −0.124, Ωk ' −0.192 for NH = 57 change their signs and become α ' +0.647,
Ωk ' +0.019, if NH = 31.

In Fig. 5 we compare the ΛCDM and GCG models in the plane (Ωk, H0) of their
common parameters. For both models we draw the one-parameter distributions
mχ
tot(Ωk), m

χ
tot(H0) (they help us to compare the best results minχtot for these

models) and the likelihood functions Ltot(Ωk), Ltot(H0).
In the top-left panel of Fig. 5 the filled contours describe the GCG model with

NH = 57, other contours differ in their color. The points of minima are marked
here as the circle (GCG, NH = 57), the pentagram (GCG, NH = 31), the square
(ΛCDM, NH = 57) and the hexagrams (ΛCDM, NH = 31) of the corresponding
color.

Fig. 5 is useful, when we want to compare predictions the ΛCDM and GCG
models in the considered cases NH = 57 and NH = 31. The plots Ltot(Ωk) and
Ltot(H0) show differences of the best fitted values, the plots mχ

tot(Ωk) and mχ
tot(H0)

describe effectiveness of these models. Mere detailed information is tabulated in
Table 2.

.5 Conclusion

In this paper we describe the observational data for Type Ia supernovae [4], BAO
(Table 1) and two data sets of the Hubble parameter data H(z) (all NH = 57 data
points from Table 3 and only 31 data points from differential ages) with the ΛCDM
model and the model with generalized Chaplygin gas (GCG).

The results are demonstrated in Table 2: for all models and variants of NH

we calculated the minimal values of the function χ2
tot (15), the results of Akaike

information criterion (19) and the best fitted values of model parameters with 1σ
errors. For the GCG model we achieve the best minimal values of minχ2

tot, however
the Akaike criterion gives advantage to the ΛCDM model, because it has the small
number Np = 3 of model parameters (degrees of freedom) in comparison with with
Np = 4 for GCG.

But the most striking result of our calculations for both models is the large
difference between the best fitted values of model parameters in the cases with
NH = 57 H(z) data points from Table 3 and NH = 31 data points, obtained with
DA method (the left hand side of Table 3). For the case NH = 57 these results are
close to the estimations for these models in Ref. [11], because in that paper we used
H(z) data points from both DA and BAO methods (though there were NH = 38
points).
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Table 3: Hubble parameter values H(z) with errors σH from DA and BAO methods.

DA method BAO method

z H(z) σH Refs z H(z) σH Refs

0.070 69 19.6 [42] 0.24 79.69 2.99 [34]

0.090 69 12 [40] 0.30 81.7 6.22 [37]

0.120 68.6 26.2 [42] 0.31 78.18 4.74 [33]

0.170 83 8 [40] 0.34 83.8 3.66 [34]

0.1791 75 4 [43] 0.35 82.7 9.1 [28]

0.1993 75 5 [43] 0.36 79.94 3.38 [33]

0.200 72.9 29.6 [42] 0.38 81.5 1.9 [38]

0.270 77 14 [40] 0.40 82.04 2.03 [33]

0.280 88.8 36.6 [42] 0.43 86.45 3.97 [34]

0.3519 83 14 [43] 0.44 82.6 7.8 [35]

0.3802 83 13.5 [45] 0.44 84.81 1.83 [33]

0.400 95 17 [40] 0.48 87.79 2.03 [33]

0.4004 77 10.2 [45] 0.51 90.4 1.9 [38]

0.4247 87.1 11.2 [45] 0.52 94.35 2.64 [33]

0.4497 92.8 12.9 [45] 0.56 93.34 2.3 [33]

0.470 89 34 [46] 0.57 87.6 7.8 [29]

0.4783 80.9 9 [45] 0.57 96.8 3.4 [32]

0.480 97 62 [41] 0.59 98.48 3.18 [33]

0.593 104 13 [43] 0.60 87.9 6.1 [35]

0.6797 92 8 [43] 0.61 97.3 2.1 [38]

0.7812 105 12 [43] 0.64 98.82 2.98 [33]

0.8754 125 17 [43] 0.73 97.3 7.0 [35]

0.880 90 40 [41] 2.30 224 8.6 [36]

0.900 117 23 [40] 2.33 224 8 [39]

1.037 154 20 [43] 2.34 222 8.5 [31]

1.300 168 17 [40] 2.36 226 9.3 [30]

1.363 160 33.6 [44]

1.430 177 18 [40]

1.530 140 14 [40]

1.750 202 40 [40]

1.965 186.5 50.4 [44]
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This essential divergence between the predictions of the variants with all NH =
57 and NH = 31 DA data points is seen visually in Fig. 1. It may be explained
and connected with 4 H(z) data points [30, 31, 36, 39] with high redshifts z ≥ 2.3.
These data points, obtained with BAO method (see the right hand side of Table 3)
have small errors σH and strongly influence on a model predictions, when we take
these points into account (in the case NH = 57). Otherwise, when we include only
NH = 31 DA data points, this effect disappears.
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