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Abstract. The hypernuclear systems NNΞ and ΞΞN are considered as an ana-
logue of nnp (3H) nuclear system (with the notation as AAB system). We use the
recently proposed modification for the s-wave Malfliet-Tjon potential. The modi-
fication simulates the Extended-Soft-Core model (ESC08c) for baryon-baryon in-
teractions. The ΞN spin/isospin triplet (S, I) = (1, 1) potential generates a bound
state with the energy B2(AB)=1.56 MeV. Three-body binding energy B3 for the
states with maximal total isospin is calculated employing the configuration-space
Faddeev equations. Comparison with the results obtained within the integral
representation for the equations is presented. The different types of the relation
between B2 and B3(VAA = 0) are discussed.
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.1 Introduction

The first Ξ-hypernuclear bound state has been reported in Ref. [1]. The lifetime
of a Ξ-hypernucleus is long enough to enable the hypernuclear state to be well
defined. According the current experimental data, the Ξ-nucleus interactions are
attractive [2]. In particular, the hyprnucleus 12

Ξ Be can be interpreted by assuming
a nucleus Wood-Saxon potential with a strength parameter of about -14 MeV [3].
Another hypernucleus 15

Ξ C is considered to be the cluster system 14N(ground state)
+ Ξ, where Ξ can be in s or p-wave state [4].

The stable states in the systems ΞNN and ΞΞN were recently predicted in
Refs. [5, 6, 7] based on the recent update of the Extended-Soft-Core (ESC08c)
model [8, 9, 10] for baryon-baryon interactions. This model has predicted the ΞN
bound spin/isospin triplet (S, I) = (1, 1) state with three-body energy B3 to be
equal to 1.56 MeV. This bound state of proton and Ξ0 or neutron and Ξ− has
maximal isospin of the ΞN pair. For the three-body systems when all pairs NN ,
ΞN , and ΞΞ are in triplet isospin states, the strong decay NΞ→ ΛΛ is forbidden.
Such three-body systems can be stable under the strong interaction. The first
calculations [6, 7] based on the assumption yield the existence of bound states for
the ΞNN and ΞΞN systems.

In the presented work, we use the differential Faddeev equations to mathemat-
ically formulate the bound state problems for the ΞNN and ΞΞN systems. The
alternative treatment is presented in Refs. [6, 7] where the integral Faddeev equa-
tions were applied. Our calculations for the systems are generally in the agreement
with the results [6, 7]. However, we found that a small correction for the results is
needed. We present our results along with the correction [11] of the results pub-
lished in Refs. [6, 7]. Additionally, the binding energy for the spin, isospin (0, 1)
bound state for the ΞΞα system is calculated. This state was not considered in
Refs. [6, 7].

The models for ΞNN and ΞΞN (ΞΞα) are restricted by the s-wave approach.
The coupling to higher-mass channels, ΣΛ and ΣΣ, does not taken into account
assuming that their contributions have the second order of smallness to the binding
energy of three-body system. The calculations do not also take into account the
Coulomb force.

.2 Formalism

2.1 Faddeev equations for AAB system

The differential Faddeev equations [12] can be reduced to a simpler form for the
case of two identical particles (like an AAB system). In this case the total wave
function of the system is decomposed into the sum of the Faddeev components U
and W corresponding to the (AA)B and (AB)B types of rearrangements: Ψ =
U + W ± PW , where P is the permutation operator for two identical particles.
In the latter expression the sign ”+” corresponds to two identical bosons, while
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the sign ”−” corresponds to two identical fermions, respectively. The set of the
Faddeev equations is written as following:

(H0 + VAA − E)U = −VAA(W ± PW ),
(H0 + VAB − E)W = −VAB(U ± PW ).

(1)

Here, H0 is the operator of kinetic energy of the Hamiltonian taken for correspond-
ing Jacobi coordinates. The functions VAA and VAB describe the pair interactions
between the particles. The model space is restricted to the states with the total
angular momentum L = 0, the momentum of pair l = 0, and momentum λ = 0 of
the third particle respectively to the center of mass of the pair.

2.2 s-wave approach

The description of the above mentioned AAB systems is distinguished by the masses
of particles and the type of AA and AB interactions. We use s-wave VAA and VAB
potentials, which are spin-isospin dependent. This requires to write Eq. (1) with
the corresponding spin-isospin configurations.

The separation of spin-isospin variables leads to the Faddeev equations for the
considering systems in the following form:

(H0 + VAA − E)U = −VAAD(1 + p)W ,
(H0 + VAB − E)W = −VAB(DTU +GpW) ,

(2)

where matrices D and G are defined by the nuclear system under consideration,
W is a column matrix with the singlet and triplet parts of the W component of
the wave function of a nuclear system, and the exchange operator p acts on the
coordinates of identical particles.

For the 3H nucleus, considered as pnn system in the state (S, I)=(1/2,−), we
applied the isospin-less approach proposed in Ref. [13]. The inputs into Eq. (2) are
the following: the spin singlet nn potential VAA = vsnn and VAB = diag{vsnp, vtnp}
that is a diagonal 2 × 2 matrix with the spin singlet vsnp and spin triplet vtnp np
potentials, respectively, and

D = (−1
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)
, W =
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)
, U = U s, (3)

where Ws and W t are the spin singlet and spin triplet parts of the W component.
Within the isospin formalism when the protons and neutron are identical particles,
instead of Eq. (2), which is a set of three equations, one has the set of two equations
for the state (S, I)=(1/2, 1/2) of the three nucleon system NNN :

(H0 + VNN − E)Φ = −VNNB(p+ + p−)Φ , (4)

where

VNN = diag{vsNN , vtNN}, B =

(
1
4
−3

4

−3
4
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4

)
, Φ =
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)
and p± are the operators of cyclical permutations for coordinates of the particles.
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2.3 Spin-isospin configurations

In Eq. (1), the Faddeev component U (and W ) of the total wave-function is ex-
pressed in terms of spin and isospin:

U = Uχspinηisospin.

The graphical representation of the spin-isospin configurations in the ΞΞN and
NNΞ systems is given in Fig. 1. Here, we have taken into account that the spin

Figure 1: The spin-isospin configurations in AAB systems: a) nnp, (S, I)= (1/2,−), b)

NNΞ, (S, I)=(3/2, 3/2), c) NNΞ, (S, I)=(1/2, 3/2), d) ΞΞN , (S, I)=(1/2, 3/2), e) ΞΞα,

(S, I)=(0, 1). The pair potentials have spin or isospin singlet and triplet components

(noted as s and t). The two-body bound states are noted by ovals.

(isospin) basis of the spin (isospin) 3/2 state for three-body AAB system is formed
by a single basis element. Thus, the Faddeev equations for each system considered
have the form (2)-(3). The equation for the state ΞΞα (S, I)=(0, 1) has a ”scalar
form” instead the form (2)-(3):

(H0 + VAA − E)U = −VAA(1 + p)W ,
(H0 + VAB − E)W = −VAB(U + pW),

(5)

where the VAB andW are scalars: VAB = vAB. Here, we used what the spin-isospin
part of the wave function of the fermion pair ΞΞ is antisymmetric relatively to the
permutation P in Eq. (1).

Let us assume that VAA = 0, then Eq. (5) is reduced to a single equation:

(H0 + VAB − E)W = −VABpW . (6)
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This equation is similar to one obtained in Ref. [6] for the NNΞ, (S, I)=(3/2, 3/2)
state within the integral Faddeev equations. However, the right hand side of Eq.
(6) has opposite sign. The restriction VAA = 0 corresponds to the situation when
NN potential can be neglected for the spin/isospin triplet (S, I) = (1, 1) state.
The differential Eq. (6) shows that the right hand side term is attractive (including
attractive Ξα potential) and can give additional contribution into the binding en-
ergy coming from the left hand side term. The corresponding term for the NNΞ,
(S, I)=(3/2, 3/2) state is repulsive due to symmetry of 3/2 spin/isospin basis func-
tions relatively permutation of two identical particles that holds the sign ”minus”
before the operator P in Eq. (1). The state NNΞ, (S, I)=(3/2, 3/2) is unbound
[6].

2.4 Interactions

In this section we consider the two-body interactions, which are the inputs to our
present study. To describe a nucleon-nucleon, we use the semi-realistic Malfliet and
Tjon MT I-III [14] potential with the modification from Ref. [15]. The MT I-III
model has the Yukawa-type form:

S = 0, I = 1:

VNN(r) = (−513.968exp(−1.55r) + 1438.72exp(−3.11r))/r,

S = 1, I = 0:

VNN(r) = (−626.885exp(−1.55r) + 1438.72exp(−3.11r))/r,

where the strength parameters are given in MeV and range parameters are given in
fm−1. The parameters were chosen in Ref. [14] to reproduce the experimental data
for np-scattering. It has to be noted that we do not use isospin formalism for the
nnp system. Thus, the protons and neutrons are not identical. The details of such
treatment are presented in Ref. [13]. To take into account that the nn interaction
is not equivalent to np interaction (that is known as the charge dependence of NN
interaction), we have made modification of the spin singlet (S, I) = (0, 1) component
of the MT I-III potential according Ref. [13] and have defined spin singlet nn
potential. The modification was performed by scaling strength parameter. The
scaling parameter γ is fixed as γ=0.975 to reproduce experimental nn scattering
length for which we used the value of -18.8 fm [16, 17]. By this way, we have
obtained three potentials vsnn, vsnp and vtnp needed for Eq. (2). Note that the MT
I-III potential is not defined for the spin/isospin triplet (S, I) = (1, 1) and singlet
(S, I) = (0, 0) states. The corresponding potentials are taken to be equal zero.

The ΞN and ΞΞ potentials simulating the ESC08c Nijmegen model are written
in the form [7]:

S = 0, I = 1:

VΞN(r) = (−290.0exp(−3.05r) + 155.0exp(−1.6r))/r,
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S = 1, I = 0:

VΞN(r) = (−568.0exp(−4.56r) + 425.0exp(−6.73r))/r,

S = 0, I = 1:

VΞΞ(r) = (−155.0exp(−1.75r) + 490.0exp(−5.6r))/r.

The parameters of the potentials were fixed to reproduce the scattering lengths
and effective radii given by the ESC08c Nijmegen model for the baryon-baryon
interaction [8, 9, 10].

For the Ξα interaction we use the Isle-type potential [18] which has the Gaussian
form:

VΞα(r) = 450.4exp(−(r/1.269)2)− 404.9exp(−(r/1.41)2).

with parameters from Ref. [19].

.3 Numerical results

The ground state binding energies B3 of the NNN , nnp, NNΞ, ΞΞN , ΞΞα sys-
tems were calculated using the models suggested above. The numerical results are
presented in Table 1. For each system, we show the spin-isospin state (S, I) and
two-body energies B2(AA) and B2(AB) for AA and AB pairs. Additionally, we
present the three-body binding energy calculated under the condition VAA = 0.
Our results are compared with ones obtained within the integral representation of
Refs. [7, 11]. One can see that results of both approaches are in the agreement
with high accuracy.

Table 1: Binding energy B3 (in MeV) calculated for various systems AAB within

the differential (DFE) and integral Faddeev (IFE) equations. The B3(VAA = 0)

is shown in brackets. Binding energy B2 (in MeV) for AA and AB pairs are also

presented. Here mN=938.91 MeV, mΞ=1318.07 MeV, mα=3727.38 MeV.

System (Spin, Isospin) B2(AA) B2(AB) B3, DFE B3, IFE[7, 11]

NNN (1/2, 1/2) 2.23 – 8.58 [13] –

nnp (1/2, –) – 2.23 8.38[13] (3.40) –

NNΞ (3/2, 1/2) 2.23 1.67 17.205 (2.213) 17.203

NNΞ (1/2, 3/2) – 1.67 2.886 (1.785) 2.8855

ΞΞN (1/2, 3/2) – 1.67 4.512 (3.408) 4.5119

ΞΞα (0, 1) – 2.09 7.635 (4.335) –

The ”spin/isospin complication” [20] of the Faddeev equations for the considered
systems is appeared by the matrix form of Eq. (3) and leads to the following
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evaluation for the three-body binding energy of the NNΞ system in the spin-isospin
states (S, I)=(3/2, 1/2), (1/2, 3/2):

B2(AB) < B3(VAA = 0) < 2B2(AB). (7)

The value of B3(VAA = 0) is restricted by 3.34 MeV. The similar result we have for
the nnp system. In this case, B3(VAA = 0) is restricted by 4.46 MeV. In contrast,
the scalar form (5) of Eq. (2) for the case ΞΞα (S, I)=(0, 1) leads to the relation:

B3(VAA = 0) > 2B2(AB). (8)

This relation is known as the mass polarization effect which takes place when
mB/mA > 1 [21, 22]. For the spin-isospin state (S, I)=(0, 1) of ΞΞα system,
the mass polarization energy can be evaluated [20]. The contribution of this en-
ergy (B3(VAA = 0) − 2B2(AB))/B3(VAA = 0) in the three-body bound energy is
equal 3.6% that is compatible with the values of 2%-4% [22, 20] for the similar
nuclear system ΛΛα. The similarity takes place due to approximate equality of
the masses of non-identical particles: mB/mA ∼ 3 for the ΞΞα and mB/mA ∼ 3
for ΛΛα. In the limit mB/mA >> 1 the mass polarization effect can be neglected
and B3(VAA = 0) = 2B2(AB). The case mB/mA < 1 is realized for the sys-
tem ΞΞN (1/2, 3/2). There is no a simple relation between B3(VAA = 0) and
2B2(AB) for the case. One can define the incremental binding energy ∆BΞΞ for
the system ΞΞN (1/2, 3/2) as ∆BΞΞ = B3− 2B2(ΞN) according the analogue with
the 6

ΛΛHe hypernucleus. For 6
ΛΛHe, the incremental binding energy is defined as

∆BΛΛ = BΛΛ

(
A

ΛΛZ
)
− 2BΛ

((A−1)
Λ Z

)
[21, 22]. Calculating the incremental energy,

one can evaluate the strength of the ΛΛ interaction. For the system ΞΞN (1/2, 3/2),
the energy includes significant contribution of the mass polarization energy because
mN/mΞ ∼ 1. Regardless that the relation (7) is not satisfied, the more appropriate
value for an evaluation of the strength of the ΞΞ interaction in ΞΞN (1/2, 3/2) is
the value of B3−B3(VΞΞ = 0). The corresponding evaluation can be obtained from
Table 1. The ΞΞ interaction is attractive in ΞΞN (1/2, 3/2). Analogically, the
spin singlet NN interaction is also attractive in the NNΞ (1/2, 3/2) system. These
attractive forces add about 1 Mev to the binding energies of the mirror systems.
Thus, the matrix elements < Ψ|VAA|Ψ > have the close values for the systems. It
is possible, because the ΞΞN system is more compact (larger B3 value) and the ΞΞ
potential has a minimum closer to the origin as is shown in Fig. 2. The Faddeev
components U , W for the NNΞ (1/2, 3/2) and ΞΞN (1/2, 3/2) systems are pre-
sented in Fig. 3. From the figure, one can see that the system ΞΞN (1/2, 3/2) is
more compact than the NNΞ (1/2, 3/2) system. For both systems, the rearrange-
ment channel A+(AB) dominates due to existence of the isospin singlet ΞN bound
state.

The mirror NNΞ (1/2, 3/2) and ΞΞN (1/2, 3/2) systems under the condition
VAA = 0 can be transformed ”one into another” by changing the particle masses.
The parameter ξ ≥ 0 sets this transformation by the formula: mξ

A = (1 + ξ)mA,
mξ
B = (1 − ξmA/mB)mB. The results of calculations for 2E2 and E3(VAA = 0)
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Figure 2: The NN (S, I)=(0, 1) and ΞΞ (S, I)=(0, 1) potentials.

as a function of ξ are shown in Fig. 4a). The transformation NNΞ (1/2, 3/2) to
ΞΞN (1/2, 3/2) replaces the ratio mB/mA > 1 to the ratio mB/mA < 1. One
can see that the relation (7) is well satisfied up to ξ=0.2 when mξ

B/m
ξ
A ≥ 1. We

conclude that the relation (7) is not guaranteed when mξ
B/m

ξ
A � 1. The affect of

the AB potential on the relation (7) is obvious. To show this we have repeated the
calculations for more deep spin triplet NΞ potential. The potential has been scaled
by the factor of 1.05. The result is shown in Fig. 4b). The relation (7) is satisfied
for all possible values ξ for this case.

It has to be noted that, as follows from Table 1 for the NNΞ (3/2, 1/2) state,
the three-body system having two bound subsystems has a deep bound state. The
value of this NNΞ (3/2, 1/2) binding energy is related with two-body energies as
B3 >> 2B2(AB) + B2(AA). Obviously, the VAA potential plays a key role for
formation of the bound state. We assume that it is a general property of such
three-body systems.

.4 Conclusions

We studied the hypernuclear system NNΞ (and ΞΞN) based on the configuration-
space Faddeev equations. The baryon-baryon potential of ESC08c model, which
generates the ΞN (S, I) = (1, 1) s-wave bound state, results in the stable states for
these three-body systems. The stability relatively NΞ→ ΛΛ conversion is provided
by fixing the states with maximal isospin. Our results and ones obtained within the
integral Faddeev equation formalism [7, 11] are in agreement with high accuracy.
Additionally, we have calculated the binding energy of the ΞΞα (S, I) = (0, 1) state.
The relations between B2 and B3(VAA = 0) were proposed for the ”spin/isospin
complicated” and ”scalar” states. The corresponding relations are significantly
different.
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Figure 3: The contour plots of the Faddeev components U a) and W b),c) for the

NNΞ (1/2, 3/2) (Left) and ΞΞN (1/2, 3/2) (Right) bound states. The Jacobi coordinates

corresponding to the components U and W are presented as x1, y1 and x2, y2.
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Figure 4: The transformation NNΞ (1/2, 3/2) to ΞΞN (1/2, 3/2) when VAA = 0.

The 2E2 (solid line) and E3(VAA = 0) (dashed line) as a function of ξ are shown. The

parameter ξ is related to the NNΞ (1/2, 3/2) system, when ξ=0, and - to the ΞΞN

(1/2, 3/2) system, when ξ=0.4. a) The original spin triplet NΞ potential is used. b) The

spin triplet NΞ potential is scaled by 1.05.
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