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Abstract. We propose a new approach for modeling three-dimensional single par-
ticle quantum rings based on separation of variables in oblate spheroidal coordi-
nates. This approach has an advantage in the variety of the ring cross sections that
can be modeled with high computational efficiency. We illustrate this by study-
ing the shape dependence of the energy spectrum for a single particle confined to
the ring of triangular cross section. The spectrum can demonstrate parabolic or
non-parabolic behavior as a function of the magnetic quantum number depending
on the ring profile.
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.1 Introduction

Quantum dots and quantum rings are becoming irreplaceable components of mod-
ern electronics due to the arising technological opportunity to control their spec-
tral properties accurately. Such structures as multiple concentric nano-rings, rings
around a quantum dot and many other complex nano-objects are been fabricated
on the base of droplet epitaxy [1, 2, 3]. Fabrication methods for creating regular
two- and three-dimensional structures of nano-rings are also being developed on the
base of nanospherical lithography [4, 5, 6].

Despite an obvious progress in fabricating nano-objects, however, an efficient
theoretical and computational description is still a challenging problem. Even for
single-particle states, we have an alternative: either to restrict ourselves to simpli-
fied models [7, 8, 9], or to resort to computationally costly calculations for taking
into account the three-dimensional structure of the systems [10, 11]. In this work
we suggest an approach which on the one hand allows us to treat quite complex
three-dimensional ring-shaped nano-structures, and on the other hand to reduce
the computational cost of the model by exact separation of variables in oblate
spheroidal coordinates.

It is well known, that the two types of the spheroidal coordinates – prolate and
oblate – both admit separation of variables for the Schrödinger equation [12, 13].
Even though there are only a few known quantum problems with exact separation
of variables, it is the prolate spheroidal coordinates that are preferably used in
hundreds of published researches. The oblate spheroidal coordinates, however, have
been used rather rarely in quantum mechanical calculations. There are only a few
such papers known to the authors. The most famous example is, probably, the the
work of Rainwater [14], where the model of a spheroidal infinitely deep potential well
made it possible to explain magnetic moments of many nuclei based on the behavior
of an unpaired nucleon. Another example of using oblate spheroidal coordinates is
given in [15], where the optical properties of spheroidal quantum dots are discussed.

In this article we demonstrate how the use of oblate spheroidal coordinates
allowed us to make some curious observations on the variations of quantum ring
spectra as the ring shape changes.

Even though separation of variables in cylindrical coordinates – which are being
used routinely in quantum ring calculations – also gives a computationally efficient
scheme, it also has an important limitation: only rectangular cross sections can be
reproduced efficiently. The flexibility of oblate spheroidal coordinate system is such
that it makes possible to model not only the rings of rectangular cross section, but
also the more realistic triangular – and even more complex – cross sections as well
[16, 17]. Here we put our special attention to the rings of triangular cross section.

It is worth mentioning that J. Even and S. Loualiche [18] have also considered
a model of a quantum ring bounded by an infinite potential wall. In their case,
the boundary of the ring is formed by circular paraboloides and the separation of
variables is performed in parabolic coordinates. The advantage of our approach
is that it allows us to vary the shape of the ring while fixing its volume and the



32 V.A. Roudnev et al.

characteristic size R, which, basically, has made our study possible. In our approach
it is also possible to model a flat substrate directly without solving an auxiliary
problem for a symmetric ring and post-selecting the solutions that fit the required
boundary condition.

The major goal of this work is to demonstrate suitability of oblate spheroidal
coordinates for describing three-dimensional nano-scale quantum rings. For this
purpose we use a simple model of a particle confined to a ring-like structure by
an infinite potential wall. This approach not only allowed us to develop a com-
putationally simple scheme for ring spectrum calculations, but also to study the
dependence of such spectra on the shape of the ring.

.2 Quantum ring in oblate spheroidal coordinates

We employ a very simplified model of a single particle in a quantum ring. Assuming
a very sharp transition between inner and outer regions of the quantum well we
can neglect the effective mass inhomogeneity. As we are interested in qualitative
properties of the particle confined in a ring, we use natural units (n.u.) of energy
such that the Schrödinger equation for a free particle takes the following form

1

2
∆Ψ + EΨ = 0 . (1)

We introduce oblate spheroidal coordinates (ξ, η, ϕ)

x = R
2

√
(ξ2 + 1) (1− η2) cosϕ,

y = R
2

√
(ξ2 + 1) (1− η2) sinϕ,

z = R
2
ξη,

ξ ∈ [0,∞), η ∈ [−1, 1], ϕ ∈ [0, 2π).

(2)

We shall require the quantum well to be bounded by the coordinate surfaces ξ = ξ0,
η = η0 and the plane ξ = 0, η = 0 which corresponds to a flat substrate. In Figure 1
we show a cross section of the coordinate surfaces, and the corresponding three-
dimensional configuration of the ring is shown in Figure 2. Other – even more
complex – combinations of coordinate surfaces can also be employed. By putting
zero boundary conditions at the surface of the ring (Figure 2) we confine the particle
inside the ring. Given this boundary conditions the wave function Ψj corresponding
to the energy Ej can be represented as a product

Ψj (ξ, η, ϕ;R) = Nkqm (R)Xmk (ξ;R)Ymq (η;R) eimϕ , (3)

where the multi-index j = {kqm} stands for a set of quantum numbers k, q and m
such that k and q give the number of roots of the corresponding functions in ξ and
η, while the magnetic quantum number m takes the values of 0,±1,±2, . . . . The
normalization constant Nkqm (R) can be determined from the condition

∫

V

Ψ∗

kqm (ξ, η, ϕ;R)Ψk′q′m′ (ξ, η, ϕ;R)dV = δkk′δqq′δmm′ , (4)
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Figure 1: Oblate spheroidal coordinate surfaces projection to (x, z)-plane with z as

the symmetry axis. The bold contour corresponds to a cross section of the quantum

ring boundary. The three-dimensional shape of the ring is given by rotating around

the z axis by the angle 0 ≤ ϕ ≤ 2π. (Color online).

Figure 2: Isometric projection of a quantum ring, a rectangular segment is taken

off to demonstrate the cross section.

where dV = R3

8
(ξ2 + η2) dξdηdϕ is the volume element in oblate spheroidal coordi-

nates.

Substituting (3) into (1) we obtain a system of ordinary differential equations
[12]

d

dξ

(
ξ2 + 1

) d

dξ
Xmk (ξ;R)−

[
λ− p2

(
ξ2 + 1

)
−

m2

ξ2 + 1

]
Xmk (ξ;R) = 0 , (5)
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d

dη

(
1− η2

) d

dη
Ymq (η;R) +

[
λ̃− p2

(
1− η2

)
−

m2

1− η2

]
Ymq (η;R) = 0 . (6)

subject to boundary conditions Xmk (0;R) = Xmk (ξ0;R) = 0 and Ymq (0;R) =

Ymq (η0;R) = 0. Here p2j = EjR
2/2 is the energy parameter, λ = λ

(ξ)
mk (p) and

λ̃ = λ
(η)
mq (p) are the separation constants. The energy spectrum is determined from

the separation constant matching condition

λ
(ξ)
mk (p) = λ(η)

mq (p) . (7)

Obviously, the spectrum scales as an inversed square of the characteristic ring size
R.

.3 Results

Consider a set of rings of a fixed volume V

V =
πR3

4

ξ0∫

0

η0∫

0

(
ξ2 + η2

)
dξdη =

πR3

12
ξ0η0

(
ξ20 + η20

)
. (8)

Evidently, the parameters of the ring ξ0 and η0 enter this formula symmetrically.
The ranges for ξ and η, however, and the corresponding coordinate surfaces are
different (Figure 1). We can, thus, fix the volume and the characteristic radius of
the ring in (8) and obtain a relationship between ξ0 and η0 ξ0 = f (η0) which keeps
the volume of the structure invariant. This way our approach allows us to study
the influence of the ring shape on the structure of its spectrum.

The shape of the ring, however, is not managed by the parameter η0 alone. Even
though the spectrum of the model scales as the inversed square of the characteristic
size of the ring 1/R2, this scaling breaks if we keep the volume of the ring fixed. So
in order to make a comprehensive study of the ring shape effects, we should also
vary the volume of the ring or its characteristic size. As the ring volume scales
exactly as R3, it is just natural to introduce a dimensionless parameter σ = V 1/3/R
and use it as the second independent shape parameter.

We illustrate the variations of the ring shape for different values of shape pa-
rameters η0 and σ in Figure 3. We can identify several distinctive cases. For smaller
values of η0 and bigger values of σ the ring surface is dominated by the hyperboloid
inside the ring with nearly cylindrical section of the ellipsoid outside the ring. As
η0 approaches 1 for smaller σ we see the picture reversed: the major part of the
boundary is formed by the ellipsoid outside with a nearly cylindrical section of the
hyperboloid inside the ring. For bigger σ the ring looks like an ellipsoid with a hole.
When the both shape parameters are small the ring looks like a one-dimensional
structure. In Figure 4 we show the energy dependence Ej (η0) on the shape param-
eter η0 for 12 lowest eigenstates of the ring. As η0 → 0 the ring is getting flat, and
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Figure 3: Ring shapes for different shape parameters η0 and σ.
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Figure 4: Energy dependence Ekq0 = Ekq0 (η0) on the shape parameter η0 for the

ground and the lowest 11 excited states for σ = 0.5, R = 1.

Table 1: Parametrization ǫkqm = ǫkq0 + αkqm
βkq of the spectra for the rings of

different shapes for V = 1/2 and R = 1.

kq η0 = 0.1 η0 = 0.5 η0 = 0.95

00 200.9 + 0.16 m1.99 47.9 + 0.66 m1.88 26.1 + 2.46 m1.66

01 700.8 + 0.14 m2.00 127.8 + 0.50 m1.96 56.7 + 3.33 m1.60

02 1491.0 + 0.14 m2.00 242.8 + 0.46 m1.97 98.9 + 3.85 m1.59

10 262.4 + 0.19 m1.99 100.2 + 0.79 m1.88 70.8 + 3.99 m1.58

20 323.6 + 0.21 m1.97 170.9 + 0.79 m1.91 137.0 + 5.31 m1.54

the energy spectrum starts becoming degenerate in quantum number k as the cor-
responding degree of freedom contributes less and less to the total energy. It is also
noteworthy that some of the curves Ej (η0) have minima. This newly discovered
observation might have some implications for ring fabrication techniques.

Another, and, probably, more interesting example of the quantum ring spectrum
shape dependence is the study of excitations in magnetic quantum number m. It
is usually assumed that the spectrum of angular excitations in a quantum ring can
be described by a simple one-dimensional model which predicts parabolic behavior
of the excited states Em ∝ m2 [19]. Our calculations, however, clearly demonstrate
essential deviations from this rather common assumption.

Consider rings of different shapes as shown in Figure 3 at a fixed volume and
calculate the lowest excitations Ekqm for (kq) = (00) , (01) , (02) , (10) , (20) and
|m| = 0, 1, . . . , 30. These energy levels are smooth functions of the quantum number
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Figure 5: Quantum ring excitations and their fits for V = 1/2, R = 1 and η0 = 0.95.

m, and their dependence on m is easy to fit with a simple parametrization ǫkqm =
ǫkq0+αkqm

βkq as is shown in Figure 5. The one-dimensional ring model corresponds
to βkq ≡ 2, and the deviations of β from this value indicate that the quantum ring is
essentially three-dimensional and should not be treated as a bended quantum wire.
As an example, we present the parametrization of the quantum ring spectra for
three different shape configurations in Table 1. In the case of a flat ring (η0 = 0.1,)
we see that all the calculated states demonstrate the parabolic m dependence, and
this ring configuration essentially follows the one-dimensional model. For the other
two configurations, however, the value of β is measurably smaller than 2, and the
one-dimensional model of the ring does not describe the energy spectrum of the
”magnetic” excitations. In Figure 6 we show a contour map for the magnetic
spectrum shape parameter β00 as a function of the ring shape parameters η0 and σ.
The maps for higher k and q have similar structure. The map demonstrates several
interesting features.

First, there is a clear tendency for flat ring configurations (η0 < 0.125) to
produce m-dependence of the spectrum very close to the textbook m2 behavior
of 1D models. The configurations with more prominent 3D structure (η0 > 0.4)
generally produce spectra that deviate from the 1D model quite substantially.

Second, the configurations of small σ follow 1D-like dependence on the magnetic
quantum number m for a broader range of configurations independent, basically, of
the parameter η0. This is not surprising, as these configurations do look like as a
1D wire loop for smaller η0 and become flat as η0 increases.

Finally, there is a special set of shapes about σ ≈ 0.45 and η0 > 0.95 for
which the deviation of the spectrum m-dependence from the 1D model is the most
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Figure 6: The magnetic quantum number excitation spectrum shape characteris-

tic β00 for rings of different shapes. The marked points correspond to the ring

configurations in Figure 3.

prominent. It is interesting to note that in the vicinity of this region we also see
rapid change in the behavior of the spectrum from purely parabolic to non-parabolic
while the variations of the ring shapes are rather small.

.4 Conclusions

Even though oblate spheroidal coordinates are used rather rarely in quantum me-
chanical calculations, we see that their application to quantum rings is a natural
choice which gives researchers flexibility in varying the structure geometry while
securing computational efficiency. The use of oblate spheroidal coordinates for
quantum ring calculations allowed us to discover a nontrivial shape dependence of
the ring spectrum properties.

In this article we studied the model of a quantum ring formed in a potential
well with infinite walls. We have shown that the corresponding Schrödinger equa-
tion admits separation of variables in oblate spheroidal coordinates. This allowed
us to construct a classification of single-particle states in the quantum ring and to
demonstrate essential dependence of the single-particle spectrum on the shape of
the quantum ring. In particular, the most demonstrating example of such shape
dependence can be seen by studying the dependence of the spectrum on the mag-
netic quantum number. We see, that a rather common assumption of parabolic
dependence of 1D model should not be taken for granted, and quantum rings of
many shapes that resemble realistic configurations are expected to demonstrate the
spectra that scale as mβ with 1.3 < β < 2.
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We have performed our demonstration on the base of a simple boundary condi-
tion model. The first step towards more elaborated and realistic models would rely
on the existence of potentials that admit separation of variables in oblate spheroidal
coordinates while reproducing the interaction of a particle with the nano-structure
of interest. Fortunately, the potentials that fit this description do exist and will be
the subject of a separate publication.
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