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Abstract. This article deals with innermost stable circular orbits (ISCOs) of neu-
tral test particles around static, self-gravitating, spherically symmetric configura-
tions that are formed and supported in equilibrium by a self-interacting real scalar
field minimally coupled to gravity. For such objects, the spacetime metric can be
expressed as the result of actions of some nonlinear integral operators (quadra-
tures) on the scalar field. The quadratures do not depend on the form of the scalar
field self-interaction potential. This feature enables us to classify the possible
ISCOs, and to study the properties of various kinds of circular orbits without
having to solve the Einstein-Klein-Gordon equations. It turns out that there exist
two kinds of ISCOs, say the first and second kind, which are characterized, respec-
tively, by a nonzero and zero specific angular momentum J of a test particle. We
show that in the case of a classical scalar field, black holes have ISCOs only of the
first kind. Naked singularities of general type have ISCOs only of the second kind,
while some fine-tuning naked singularities and regular configurations have stable
circular orbits of any positive radius. Black holes supported by phantom scalar
fields can have ISCOs of both the kind depending on the Schwarzschild mass: for
any one-parameter family of black holes parameterized by the mass, there exists
a value mc > 0 such that ISCOs of the first and second kind are in the intervals
mc < m < ∞ (J > 0) and 0 < m 6 mc (J = 0), respectively. The orbital radius
rISCO reaches its minimum value at m = mc and goes to infinity as m goes to zero
or infinity.
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.1 Introduction

Stable circular orbits play important roles both in theoretical and observational
astrophysics [1, 2]. In particular, innermost stable circular orbits (ISCOs) around
black holes are usually identified with inner edges of accretion disks. It seems to
be quite adequate at least for thin disks, assuming that magnetohydrodynamic
forces are weak in comparison with gravitational ones [3, 4]. From a theoretical
point of view, as well as from an observational point of view, the radius of an
ISCO and the orbital frequency (angular velocity) of a test particle are among the
most informative parameters in the astrophysics of compact self-gravitating stellar
objects. Circular orbits around vacuum black holes are well studied [5]. In the
Universe, on the other hand, stellar-mass black holes and supermassive black holes
in galactic nuclei are surrounded by dark matter and should not be thought of as
objects immersed in an empty spacetime. One of the most notable models of dark
matter is a self-interacting real scalar field [6, 7, 8] because it is thought to be
involved only in interaction with gravity but not any other matter fields. Another
compact objects of interest (at least to theorists), where scalar fields may naturally
occur, are the so-called boson stars [9]; in the case of real fields, they are described
mathematically by regular solutions of the Einstein-Klein-Gordon equations.

The question naturally arises whether one can distinguish stellar objects with
scalar hair from other ones, simply by observing the behavior of test particles on
circular orbits near the ISCO. It is not known at present whether a real scalar field
exists in nature or we should consider it from a purely phenomenological point of
view. In any case we also do not know the form of the self-interaction potential and
there does not seem to be any guiding idea about its form in strong fields. On the
one hand, there are uncountable number of degrees of freedom in the choice of the
potential and it gives us efficient possibilities to model, in particular, the observed
properties of dark matter, different kinds of boson stars, and scalar hair around
compact self-gravitating objects. On the other hand, it requires that the problem
for the Einstein-scalar field system be treated in some unified manner that would
be appropriate, in some sense, for all admissible self-interaction potentials. Thus,
it is reasonable to put the question in a different way: what can we say in general
about ISCOs near scalar hairy objects?

The main goals of this article are to describe a general way of studying ISCOs
around static, spherically symmetric compact objects with scalar hair, to classify
the ISCOs, and to establish some of their basic properties without addressing the
self-interaction potentials. It is possible because the circular orbits in a spherically
symmetric spacetime are determined only by one of two independent metric func-
tions. This function uniquely determines the corresponding effective potential of
a test particle and the kind of an ISCO can be described — as will be seen be-
low — in terms of a few parameters or another function belonging to a family of
’simple’ functions (in the sense of their behaviour). We use the so-called ’inverse
problem method for static scalar field configuration’ [10, 11, 12, 13, 14, 15, 16] and
the quadrature formulas obtained in Refs. [17, 18, 19]. This approach enables us to
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study the properties of circular orbits for arbitrary scalar field potentials without
having to solve the Einstein-Klein-Gordon equations.

It is necessary to make some additional remarks concerning the stability of
scalar field configurations and the so-called no-hair theorem [20]. First, it seems
probable that most of scalar field configurations are unstable under linear pertur-
bations. Second, the no-hair theorem are rules that forbid due to different reasons
some hairy configurations; in our case, it says that if a static spherically sym-
metric configuration of a classical self-gravitating minimally coupled scalar field
is an asymptotically flat black hole or a regular solution, then the field potential
is negative in some neighbourhood of the horizon or, respectively, of the centre.
Nevertheless, it is possible that these facts do not impose fatal restrictions on the
domain of applicability of our results, because one can consider a scalar hairy stel-
lar object without the event horizon. Then exterior metric remains the same as
in the purely scalar field case and have to match with the corresponding interior
solution. In addition, the object’s surface should be located between the horizon
and the photon sphere of the corresponding purely scalar field configuration, and
the field potential should be positive up to the surface. Perhaps such scalar hairy
objects would be more closely connected with the astronomical observations than
the purely scalar field ones. Note, that there are many possibilities, which depend
on the equation of state of ordinary matter, of extending of an exterior solution
through the object’s surface; in general, the interior solution has a very different be-
haviour than the extended purely scalar field solution. For example, a completely
regular interior solution may have the exterior part which would be analytically
extended to the centre as a naked singularity or a black hole if the solution was a
purely scalar field one.

This article is organized as follows. Section 2 contains mathematical prelimi-
naries. In Section 3 we consider spherically symmetric scalar field configurations.
The quadrature formulas are written for two different coordinate systems, namely,
for the the Schwarzschild-like coordinates and for the so-called quasiglobal coordi-
nates. They are used, respectively, for the cases of classical and phantom scalar
fields. Section 4 is devoted to exploring stable circular orbits in the general context
of spacetime geometry near spherically symmetric scalar field configurations. In
Section 5 we consider stable circular orbits around static, spherically symmetric
scalar field configurations both for classical and phantom fields, that is, respec-
tively, for canonical and noncanonical (negative in our notation) kinetic terms in
the action. We prove some basic facts about ISCOs for classical scalar field config-
urations, including black holes and naked singularities, and describe an algorithm
for studying circular orbits in the case of phantom fields. To demonstrate common
features of circular orbits around phantom scalar field configuration, we explore in
detail a one-parameter family of solutions, which includes wormholes, a topological
geon, and black holes.

Throughout this article, we use the geometrical system of units with G = c = 1.
Latin and Greek indices run from 0 to 3 and from 1 to 3, respectively. We adopt
the metric signature (+ − −−). Summation over any repeated index is assumed.
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.2 Local bases, connection and curvature

Geodesics are fully determined by geometry, therefore, it is useful first to outline
the geometry of spherically symmetric spacetimes in a sufficiently general way. We
will deal with the spherically symmetric metric

ds2 = A2dt2 −B2dr2 − C2(dθ2 + sin2 θ dϕ2), (1)

where the metric functions A, B, and C depend only on the coordinates t and r. For
the sake of generality we retain the ambiguity in the choice of the radial coordinate,
so that in each specific case we can apply an appropriate gauge condition to the
metric functions.

It is convenient to use the orthonormal basis of vector fields, associated with the
metric (1), and the dual basis of 1-forms, so that the metric components become
(gij) = diag{1,−1,−1,−1}. These bases are given, respectively, by

e0 =
1

A
∂t, e1 =

1

B
∂r, e2 =

1

C
∂θ, e3 =

1

C sin θ
∂ϕ, (2)

and
e0 = Adt , e1 = B dr , e2 = C dθ , e3 = C sin θ dϕ. (3)

We need also the corresponding orthonormal basis of 2-forms

α1 = e0∧e1, α2 = e0∧e2, α3 = e0∧e3, ∗α1 = e3∧e2, ∗α2 = e1∧e3, ∗α3 = e2∧ e1, (4)

where ∗ is the Hodge star operator. Furthermore, from here some convenient no-
tation will be used: the directional derivatives along the basis vector fields (2) will
be denoted by the corresponding subscript indices placed in the opposite order in
parentheses (that can be omitted in practical calculations). For example,

e0φ ≡ φ(0) =
1

A
∂tφ , e0e1C ≡ C(1)(0) =

1

A
∂t

(
1

B
∂rC

)
.

The connection 1-forms in the bases (2) and (3) are defined by the usual rule

∇
X
ej = ωij(X) ei and can be obtained by calculating the exterior derivative dei and

applying Cartan’s first structure equation [5]

dei + ωij ∧ ej = 0 .

Calculations of the curvature consist in applying the Cartan’s second structure
equation

1

2
Rijkl e

k∧ el = gim (dωmj + ωmp ∧ ω
p
j ) .

Without going into details, the algebraically independent connection 1-forms
and the curvature components are

ω0
1 =

A(1)

A
e0 +

B(0)

B
e1, ω0

2 =
C(0)

C
e2, ω0

3 =
C(0)

C
e3, ω0

α = ωα0 ,

ω1
2 = −

C(1)

C
e2 , ω1

3 = −
C(1)

C
e3 , ω2

3 = −cot θ

C
e3 , ωαβ = −ωβα , (5)
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R0101 =
B(0)(0)

B
−
A(1)(1)

A
, R0202 = R0303 =

C(0)(0)

C
−
A(1)C(1)

AC
,

R0212 = R0313 =
C(1)(0)

C
−
A(1)C(0)

AC
,

R1212 = R1313 =
C(1)(1)

C
−
B(0)C(0)

BC
, R2323 =

C2
(1) − C2

(0) − 1

C2
. (6)

It is useful to write the curvature as

R =

(
B(0)(0)

B
−
A(1)(1)

A

)
α1 ⊗ α1 +

(
C(0)(0)

C
−
A(1)C(1)

AC

)
(α2 ⊗ α2 + α3 ⊗ α3)

+
C2

(1) − C2
(0) − 1

C2
∗α1 ⊗ ∗α1 +

(
C(1)(1)

C
−
B(0)C(0)

BC

)
(∗α2 ⊗ ∗α2 + ∗α3 ⊗ ∗α3)

+

(
C(1)(0)

C
−
A(1)C(0)

AC

)
(α3 ⊗ ∗α2 + ∗α2 ⊗ α3 − α2 ⊗ ∗α3 − ∗α3 ⊗ α2),

in order to show its structure in spherically symmetric spacetimes more explicitly.
In calculating the curvature we take into account the identity

C(1)(0)

C
−
A(1) C(0)

AC
=

C(0)(1)

C
−
B(0)C(1)

B C
.

For the sake of completeness, it is also useful to write out nonzero components of
the Ricci tensor R and the scalar curvature S. They are

R00 =
A(1)(1)

A
−
B(0)(0)

B
− 2

C(0)(0)

C
+ 2

A(1)C(1)

AC
, R01 = 2

A(1)C(0)

AC
− 2

C(1)(0)

C
,

R11 =
B(0)(0)

B
−
A(1)(1)

A
− 2

C(1)(1)

C
+ 2

B(0)C(0)

BC
,

R22 = R33 =
C(0)(0)

C
−
A(1)C(1)

AC
+
B(0)C(0)

BC
−
C(1)(1)

C
−
C2

(1) − C2
(0) − 1

C2
, (7)

S

2
=
A(1)(1)

A
−
B(0)(0)

B
− 2

C(0)(0)

C
+ 2

A(1)C(1)

AC

+ 2
C(1)(1)

C
− 2

B(0)C(0)

BC
+
C2

(1) − C2
(0) − 1

C2
. (8)

.3 Self-gravitating scalar field configurations

The action with minimal coupling between curvature and a real scalar field φ has
the form (in geometric units, G = c = 1)

Σ =
1

8π

∫ (
−1

2
S + ε〈dφ, dφ〉 − 2V (φ)

)√
|g| d 4x ,
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where ε = ±1, V (φ) is a self-interaction potential, and the angle brackets denote
the scalar product with respect to the metric. The energy-momentum tensor has
the form

8πT = 2 ε dφ⊗ dφ − (ε 〈dφ, dφ〉 − 2V ) g . (9)

Assuming φ = φ(t, r) and using (7), (8), and (9), the Einstein-Klein-Gordon system
for a spherically symmetric spacetime with the metric (1) can be written as

{00} : −2
C(1)(1)

C
+ 2

B(0)C(0)

BC
−
C2

(1) − C2
(0) − 1

C2
= ε(φ 2

(0) + φ 2
(1)) + 2V , (10)

{11} : −2
C(0)(0)

C
+ 2

A(1)C(1)

AC
+
C2

(1) − C2
(0) − 1

C2
= ε(φ 2

(0) + φ 2
(1))− 2V , (11)

{22} :
A(1)(1)

A
−
B(0)(0)

B
+
C(1)(1)

C
−
C(0)(0)

C
+
A(1)C(1)

AC
−
B(0)C(0)

BC
= ε(φ 2

(0) − φ 2
(1))− 2V , (12)

{01} : −2
C(0)(1)

C
+ 2

B(0)C(1)

BC
= 2 εφ(0)φ(1) , (13)

2φ+ εV ′φ = 0 : φ(0)(0) − φ(1)(1) + φ(0)

(BC2)(0)

BC2
− φ(1)

(AC2)(1)

AC2
+ εV ′φ = 0 . (14)

In the case of static spacetimes the system (10) — (14) can be reduced to the one
involving quadratures only [17, 18, 19]. Such a reduction is possible for both the
basic gauge conditions in the metric (1), namely, C = r and B = 1/A.

The gauge condition C = r (r is the area coordinate) defines the Schwarzschild-
like coordinates, and will be used below in our analysis of circular orbits around
black holes, regular configurations, and naked singularities supported by classical
scalar fields. It is convenient to rewrite the metric (1) in the form

ds2 = e2Ffdt2− dr2

f
−r2(dθ2 +sin2 θ dϕ2), (so that A2 = e2Ff, B2 = 1/f). (15)

In this case each strictly monotonic function φ(r) of class C2, with the asymp-
totic behaviour φ = O

(
r−1/2− α) (α > 0), determines a one-parameter family of

solutions to the system (10) — (14) by the quadratures [19]

F (r) = − ε
∞∫
r

φ′
2
rdr , ξ(r) = r +

∞∫
r

(
1− eF

)
dr , (16)

A2 = 2r2

∞∫
r

ξ − 3m

r4
eFdr , f(r) = e−2FA2 , (17)
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Ṽ (r) =
1

2r2

(
1− 3f + εr2φ′

2
f + 2 e−F

ξ − 3m

r

)
, (18)

where the parameter m (Schwarzschild mass) takes arbitrary real values.

These formulas give a general solution to the ’inverse problem’ for spherically
symmetric self-gravitating scalar field configurations formulated in [15, 16]. It
means that for a given monotonic φ(r), one sequentially finds the functions eF ,

ξ, A2, f , Ṽ (r), and then find the potential V (φ) = Ṽ (r(φ)). This mathematical
technique allows us to examine the problem for large classes of admissible self-
interaction potentials. It is important because we have no a priori knowledge of
the form of the potential. Since the functions φ, eF , and ξ uniquely determine each
other, one can start by specifying either the function eF or ξ instead of φ. Note
also that each solution to the system (10) — (14) satisfies (16) — (18) regardless of
the monotonicity of φ.

It turns out that for black holes, wormholes, and topological geons supported by
phantom scalar fields (ε = −1), the gauge condition B = 1/A is more applicable.
It defines the so-called quasiglobal coordinates [21] in which the metric and the
quadratures can be written as [18, 19]

ds2 = A2dt2 − dr2

A2
− C2

(
dθ2 + sin2 θ dϕ2

)
, (19)

φ′ =
√
− εC ′′/C , A2 = 2C2

∞∫
r

r − 3m

C4
dr , (20)

Ṽ (r) =
1

2C2

(
1− 3C ′

2
A2 − CC ′′A2 + 2C ′

r − 3m

C

)
, (21)

where the mass m takes arbitrary real values.1

The solution (19) — (21) is applicable in the general case. In order to use
these formulas for phantom scalar fields, it is necessary to specify a monotonically
increasing function C(r) satisfying the condition C ′′ > 0 (for ε = −1) on R+ and
having the asymptotic behaviour

C = r + o(1) as r →∞ . (22)

The condition (22) guarantees that m will have sense of the Schwarzschild mass.

Then the field function φ(r), the metric function A2, and the function Ṽ (r) can be
found from (20) and (21) by direct calculation. In the case of ε = 1, one should
choose C(r) such that C ′′ 6 0.

1In our notation r and C(r) correspond, respectively, to ξ and r(ξ) in the notation of [19].
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.4 Circular orbits in spherically symmetric spacetimes

4.1 The geodesics equations

The geodesic equation ∇UU = 0 in the basis (2) gives the four equations

dU i

ds
+ ωij(U)U j = 0 (23)

for the components of the four-velocity

U = U0e0 + U1e1 + U2e2 + U3e3,

where

U0 = A
dt

ds
, U1 = B

dr

ds
, U2 = C

dθ

ds
, U3 = C sin θ

dϕ

ds
.

In spherically symmetric spacetimes, without loss of generality, we may assume
that a geodesic has the initial conditions

U2 = 0 , θ = π/2 . (24)

Then, we see from the 2-component of Eq. (23),

dU2

ds
+
C(0)

C
U2U0 +

C(1)

C
U2U1 − cot θ

C
U3U3 = 0 ,

that the geodesic under consideration are entirely in the equatorial plane. In what
follows, we suppose that the conditions (24) are fulfilled.

The remaining geodesic equations take the form

dU0

ds
+

A(1)

A
U0U1 +

B(0)

B
U1U1 +

C(0)

C
U3U3 = 0 , (25)

dU1

ds
+

A(1)

A
U0U0 +

B(0)

B
U0U1 −

C(1)

C
U3U3 = 0 , (26)

dU3

ds
+

C(0)

C
U0U3 +

C(1)

C
U1U3 = 0 . (27)

Subtracting Eqs. (26) and (27), multiplied, respectively, by U1 and U3, from Eq. (25)
multiplied by U0, one obtains the obvious first integral of motion(

U0
)2 −

(
U1
)2 −

(
U3
)2

= k , k = −1 , 0 , 1, (28)

where k = −1, k = 0, and k = 1 for spacelike, null, and timelike geodesics re-
spectively. Another first integral of motion (specific angular momentum of a test
particle),

U3C = J, or C2dϕ

ds
= J, (J = constant), (29)
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can be deduced from Eq. (27) by taking into account the equality

C(0)U
0 + C(1)U

1 = dC/ds

which holds along the geodesic.
In static spacetimes, one more first integral of motion (specific energy of a test

particle) follows, in an analogous manner, from Eq. (25). One has

U0A = E, or A2 dt

ds
= E (E = constant), (30)

so that the first integral (28) can be rewritten, by substituting for U3 and U0

from (29) and (30), in the form(
dr

ds

)2

=
1

A2B2

(
E2 − Veff

)
, (31)

where the effective potential is defined by

Veff = A2

(
k +

J2

C2

)
. (32)

4.2 Circular orbits

From now on we will restrict our attention to null (k = 0) and timelike (k = 1)
circular orbits in a static, asymptotically flat, spherically symmetric spacetime with
a nonnegative mass m. The latter restriction is reasonable since for ε = 1 the
condition m 6 0 determines only naked singularities which have no circular orbits
at all; for ε = −1 it is sufficient to consider only the case m > 0, because the change
m→ −m gives us the solution which may be obtained by mirror-reflecting through
the hypersurface r = 0. We also will suppose that the orbit under consideration
corresponds to a test particle that is ’visible’ to distant observers; in particular, the
orbit is placed outside the event horizon in black hole spacetimes and outside the
throat in wormholes.

Since U1 = 0 in a circular orbit, we obtain from (26) and (28) — (30) the
equations

A′

A
U0U0 − C ′

C
U3U3 =

A′

A

E2

A2
− C ′

C

J2

C2
= 0 ,

(
U0
)2 −

(
U3
)2

= k , (33)

which for massive particles give

E2 =
A3C ′

AC ′ − A′C
, J2 =

C3A′

AC ′ − A′C
, U0 =

E

A
, U3 =

J

C
. (34)

Using these formulas for a given orbital radius (i. e. a value of the radial coordi-
nate), one can straightforwardly calculate the specific energy, the specific angular
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momentum, and the angular velocity (orbital frequency) of a test particle. It is
clear that circular orbits exist only in the region where the condition

AC ′ − A′C > 0 (35)

holds; here the equality sign corresponds to massless test particles (k = 0) moving
on the so-called photon orbit of some radius rph. It is a necessary but not sufficient
condition: for instance, it holds in any flat spacetime, but there are no circular
orbits. In order to obtain a convenient sufficient condition, one needs to use the
effective potential.

The first derivative of the effective potential (32),

V ′eff = k
(
A2
)′

+

((
A2
)′ − 2A2 C

′

C

)
J2

C2
, (36)

can be rewritten, using the last equation in (33) and the last two equations in (34),
in the form

V ′eff = 2A2

(
A′

A

E2

A2
− C ′

C

J2

C2

)
,

and hence (taking into account (33)) equations determining circular orbits become

V ′eff = 0 , E2 = A2

(
k +

J2

C2

)
, U0 =

E

A
, U3 =

J

C
. (37)

The subsequent arguments are quite similar to the ones known for the Keplerian
orbits in classical mechanics and for bound orbits in the Schwarzschild spacetime.
The result is that each local extremum r of the effective potential determines a
circular orbit of the same radius: namely, the orbit is stable or unstable if r is
minimum or a maximum, respectively. The stable orbits obey the condition V ′′eff >
0.

The orbit at some r = rISCO > rph is said to be an innermost stable circular
orbit (ISCO) if there are no stable orbits with radiuses smaller than rISCO and there
exist stable orbits for each r > rISCO. As a rule the ISCO occurs when J decreases
and the leftmost minimum of the effective potential degenerates into an inflection
point. For example, as we will see below in this section, for a black hole supported
by a scalar field with positive kinetic energy, there exists some constant JISCO > 0,
depending on the forms of A and C, such that the first equation in (37) has at least
two solutions r(J) for each specific angular momentum in the interval (JISCO,∞),
has a unique solution at J = JISCO, and has no solutions in the interval (0, JISCO).
It is obvious that r(JISCO) = rISCO. Below the ISCOs with JISCO > 0 and JISCO = 0
will be referred to as the ones of the first and the second kind respectively.

The inflection point of the effective potential obeys the system of equations

V ′eff = 0 , V ′′eff = 0 . (38)

In Ref. [22, 23] the second equation is written only in terms of the derivatives of
the metric function up to the second order, using a different form of the effective
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potential, namely, Veff (r, E, J) = E2/A2−J2/C2−1. We prefer to use the effective
potential Veff (r, J) in the form (32), in which it depends only on J , but not on E: it
is not essential for the final results but makes the subsequent analysis much easier.
For the sake of completeness, here we derive in our notation a convenient explicit
form of the system (38) (note that it makes sense only for massive particles, that
is, in the case k = 1).

At extremum points of the effective potential, its second derivative with respect
to r can be expressed in the form

V ′′eff

∣∣∣∣
V ′
eff=0

=

(
(A2)

′

A2

)′
Veff − 2

((
A2
)′ C ′
C

+ A2 C
′′

C
− 3A2 C

′2

C2

)
J2

C2

= A2

{(
(A2)

′

A2

)′
+

((
(A2)

′

A2

)′
− 2

(A2)
′

A2

C ′

C
− 2

C ′′

C
+ 6

C ′2

C2

)
J2

C2

}
.

Therefore, the system (38) (divided by A2) is equivalent to the system

(A2)
′

A2
+

(
(A2)

′

A2
− 2

C ′

C

)
J2

C2
= 0 , (39)(

(A2)
′

A2

)′
+

((
(A2)

′

A2

)′
− 2

(A2)
′

A2

C ′

C
− 2

C ′′

C
+ 6

C ′2

C2

)
J2

C2
= 0 . (40)

It follows from the condition (35) that the coefficient of J2/C2 in the second term
of Eq. (39) is negative in the region, where circular orbits exist. Eliminating J2/C2

from Eqs. (39) and (40), we obtain(
(A2)

′

A2

)′
−
(

(A2)
′

A2

)2

− C ′′

C ′
(A2)

′

A2
+ 3

C ′

C

(A2)
′

A2
= 0 ⇔

{
ln

(
A′C3

A3C ′

)}′
= 0 .

Finally, Eqs. (38), which determine rISCO and JISCO, take the form(
A′C3

A3C ′

)′
= 0 , J2

ISCO =
A′C3

AC ′ − A′C

∣∣∣
r = rISCO

. (41)

In order to obtain the ISCO parameters, one should find, if any, solutions of the
first equation in the region r > rph, and then choose (among them) the leftmost
solution for which the second equation gives a positive value of J2. Equations (37)
enable one to find the specific energy and the angular velocity.

For the angular velocity ω = dϕ/dt of a test particle as measured by a static
observer at infinity, from the last two equations in (37) we find

ω2 =
J2

E2

A4

C4
. (42)

It is important that the angular velocity of a test particle at a circular orbit depends
only on its radius and can be expressed only in terms of the metric functions. From
(42), taking (34) into account, we obtain

ω =
√

(A2)′
/

(C2)′ . (43)
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.5 Circular orbits around scalar field configurations

5.1 Scalar field configurations with ε = 1

First we consider the case of black holes with classical scalar field hair, for which
ξ(0) < 3m. In the Schwarzschild-like coordinates (see Eqs. (15) — (18))

AC ′ − A′C =
1

A

(
A2C ′ − 1

2

(
A2
)′
C

)
=

ξ − 3m

rA
eF ,

so that the necessary condition (35) for the existence of circular orbits becomes

ξ − 3m > 0 . (44)

Let rph be the (unique) solution of the equation ξ(r)− 3m = 0, that is, the radius
of the photon sphere. The condition (44) holds for all r > rph because ξ(r) is a
monotonically increasing function (see Eq. (16) and the right panel in Figure 1).
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Figure 1: Two examples of families of solutions with self-gravitating scalar hair. Each

of these families is completely determined by the corresponding scalar field. The map

ξ[φ], which is defined by (16), depends only on the form of φ(r); its value at any specified

field is simply a function with the asymptotic behaviour ξ(r) = r + o(1) as r → ∞.

The Schwarzschild mass m determines the type of the solutions. For φ1(r) and 3m >

ξ[φ1](0) = 0.594, the spacetime is a black hole, while for 3m < ξ[φ1](0) it is a naked

singularity; the equality sign also corresponds to a naked singularity, because of φ1 =

π/2 − r + o(r) as r → 0. For φ2(r), the situation differs from the previous one only in

that φ2 = π/2 − r2 + o(r2) as r → 0, and hence the equality 3m = ξ[φ2](0) = 0.813

corresponds to a regular configuration.

Now we need the following two lemmas.

Lemma 1. Let ε = 1. If ξ(0) < 3m (black holes) then eF >
ξ − 3m

r
for all r > 0.
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Since
eF = 1 + o(1/r), r →∞,

the integration by parts in (16) yields

ξ(r) = r +

∞∫
r

(
1− eF

)
dr = reF +

∞∫
r

(
eF
)′
rdr .

If ε = 1 then
(
eF
)′
> 0 for all r > 0, and therefore

reF− ξ(r) + 3m = 3m−
∞∫
r

(
eF
)′
rdr >

ξ(0)−
∞∫
r

(
eF
)′
rdr =

∞∫
0

(
eF
)′
rdr −

∞∫
r

(
eF
)′
rdr =

r∫
0

(
eF
)′
rdr > 0 .

This proves the lemma. 2

Lemma 2. Let ε = 1 and m > 0. If the metric (15) describes (in the Schwarzschild-

like coordinates) the spacetime around a black hole (ξ(0) < 3m), then
(
A2
)′
> 0 in

the region [rph,∞).

In this case, the metric has the form (15). From (17), the derivative of A2 with
respect to r can be written in the form

(
A2
)′

=
2

r

(
A2 − ξ − 3m

r
eF
)
.

Integrating by parts in (17) and applying the identity (ξ − 3m)′ = eF , we obtain

A2 = 2r2

∞∫
r

ξ − 3m

r4
eFdr =

2

3

ξ − 3m

r
eF +

2r2

3

∞∫
r

[
(ξ − 3m)eF

]′
r3

dr

=
2

3

ξ − 3m

r
eF +

e2F

3
+
r2

3

∞∫
r

(
e2F
)′ dr
r2

+
2r2

3

∞∫
r

ξ − 3m

r3

(
eF
)′
dr .

Because of nonnegativity of the integrals and Lemma 1, we have

A2 >
ξ − 3m

r
eF . (45)

The proof is complete. 2
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Figure 2: On the left: the effective potentials for the black hole with the Schwarzschild

mass m = 1 and the scalar field φ1 (see Figure 1) as the source. The minimum of

the potential for J2 = 16 corresponds to a stable circular orbit while the maximum

corresponds to an unstable circular orbit; with decreasing J , these extrema approach each

other and coincide for some JISCO > 0 at the inflection point (J2
ISCO = 11.932, rISCO =

5.741) which determines the ISCO. On the right: the squared specific angular momentum

J2 as a function of the radius of a circular orbit; the minimum corresponds to the ISCO.

Now we can consider, with sufficient generality, the question of the existence
and stability of circular orbits around black holes with classical scalar field hair. It
is straightforward to check that

V ′eff =
(
A2
)′ − 2

r

ξ − 3m

r
eF

J2

r2
=

2

r

{
A2 − ξ − 3m

r
eF
(

1 +
J2

r2

)}
. (46)

Since for any fixed J there exists a = a(J) > 0 such that V ′eff > 0 in the asymp-
totic region (a,∞), and also V ′eff (rph) > 0, the effective potential either has no
extrema or has at least one maximum and one minimum in the region [rph,∞).
As a consequence of Lemma 2 and boundedness from above of the positive func-
tion (ξ − 3m) eF/r3 in the region [rph,∞), there exists JISCO > 0 such that the
extremums exist for all J > JISCO, but not for J < JISCO.

Let r̄ be an extremum. Then the function r̄(J) is well-defined implicitly by the
equation V ′eff = 0 (with V ′eff given by (46)) in some interval (JISCO, J∗) in which
for a fixed mass we have

∂r̄

∂J
= −

(
∂V ′eff
∂J

/ ∂V ′eff
∂r

)
r=r̄

=
4(ξ − 3m)eFJ

r4V ′′eff

∣∣∣
r=r̄

.

Let r̄1 and r̄2 be, respectively, the leftmost maximum and the leftmost minimum
of the effective potential. Thus, in the interval (JISCO, J∗),

∂r̄1

∂J
< 0 and

∂r̄2

∂J
> 0 ,
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so that the maximum and the minimum approach each other as J → JISCO from
above and then coincide at the inflection point for J = JISCO > 0. This proves that
the value J = JISCO corresponds to the ISCO. Note that one can also consider the
inverse function J(r̄) defined in the interval (rph,∞), and find that the parameters
JISCO and rISCO are determined by the unique minimum of this function, as shown
in Figure 2, because V ′′eff = 0 and ∂J/∂r̄ = 0 at the inflection point. Thus,
Lemma 2 says, in essence, that a black hole supported by a classical scalar field has
the ISCO only of the first kind.

Now we discuss briefly circular orbits around naked singularities and regular
solutions. Generally, naked singularities have ISCOs of the second kind but some
of them may not have the ISCO at all. We will say that a naked singularity is of
general type if the metric function A2 = Veff

∣∣
J=0

has a minimum at some point
rISCO > 0 which corresponds to the innermost orbit in the family of all possible
stable circular orbits. Thus, there is the ISCO of the second kind: the specific
angular momentum and the angular velocity of a test particle at the ISCO are zero,
so that the particle will remain at rest for any static observer. Note that this feature
of the ISCO are also possessed by some other types of naked singularities [24, 25, 26].
It is easy to see directly from (15) — (18) that a naked singularity is of general type
if ξ(0) > 3m. If ξ(0) = 3m then the corresponding naked singularity is of general
type if and only if ξ = ξ(0)+ar+br2 +O

(
r3
)

(a > 0, b > 0) as r → 0. If ξ(0) = 3m
and ξ′(0) = 0 then the corresponding naked singularity has stable circular orbits
of any radius, that is, does not have any ISCO at all. At last, there are regular
solutions, which necessarily obey the condition ξ = ξ(0) + ar+ br4 +O

(
r5
)

(a > 0)
as r → 0; they also have stable circular orbits of any radius. In the last two cases,
the specific angular momentum tends to zero as r → 0.

5.2 Phantom scalar field configurations, ε = −1

Now we use the quasiglobal coordinates, so that the metric has the form (19) and
any configuration is completely specified by its mass m and area function C(r).
In this case the problem is much more complicated because the behaviour of the
metric function A2 (and the corresponding effective potentials) is determined by
the entire function C(r) rather than its power series expansion up to some finite
order. It means that now ISCOs cannot be characterized only in terms of a few
parameters as it has been done in the previous section, where the type of ISCO
was determined (for ξ(0) 6= 3m) by ξ(0) and m. In fact, for any given admissible
function C(r), one has to examine the corresponding spacetime individually.

It follows from Eqs. (20) and the asymptotic behaviour (22) that C ′′ > 0 and
C ′ 6 r/C 6 1 in the region outside the event horizon of a black hole or outside the
throat of a wormhole. Also,

(
A2
)′

=
2

C

(
C ′A2 − r − 3m

C

)
,
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and the necessary condition (35) for the existence of circular orbits now reads

AC ′ − A′C =
1

A

(
A2C ′ − 1

2

(
A2
)′
C

)
=

r − 3m

AC
> 0 ,

so that we are only interested in the region r > 3m. Thus, in the quasiglobal coor-
dinates, the radius of the photon circular orbit equals 3m as in the Schwarzschild
spacetime. However, the ISCO properties and the behaviour of the circular orbits
are very different from those for the Schwarzschild case. As we will see below, the
condition

(
A2
)′
> 0 does not, in general, hold in the region r > 3m even for black

holes. Since

V ′eff =
(
A2
)′ − 2

C

r − 3m

C

J2

C2
=

2

C

{
C ′A2 − r − 3m

C

(
1 +

J2

C2

)}
, (47)

it means that for all J > 0 the effective potential has a minimum in the region if A2

does. Thus, there can exist, depending on the mass m, both of the two above kinds
of innermost stable circular orbits. Moreover, there exist configurations that do not
have circular orbits at all. For example, the function C(r) =

√
r2 + a2 determines

the Ellis wormhole (named ’drainhole’ by the author [27] and discovered indepen-
dently by Bronnikov [12]) which is formed by the self-gravitating phantom massless
scalar field. This solution has A(r) = 1, V (φ) = 0, and φ(r) = arctan(r/a)− π/2.
The corresponding spherically symmetric spacetime is curved, static, and geodesi-
cally complete but has no circular orbits.

In general, phantom scalar field configurations demonstrate a variety of possible
behaviours in the asymptotic region r → −∞ [28, 29]. Also, such a configuration
can either have or not have the event horizon. A regular asymptotically flat (near
plus and minus infinity) wormhole may exist either if m = 0 and C(r) is an even
function, or if C(r) has a minimum at some positive value of the radial coordinate;
in the latter (fine-tuning) case the asymptotic regularity takes place only for a
unique positive value of m observed in the half r > 0 of the wormhole, while in the
’negative’ half the mass has a negative value.

We restrict our attention to phantom scalar field black holes. It is convenient
to illustrate the basic properties of the ISCOs by a simple example which can be
treated analytically. We choose

C =
(
r4 + 2r2 + 16

)1/4
(48)

and find from (20) that

φ ′ = −
√
r4 + 47r2 + 16

r4 + 2r2 + 16
, (49)
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A2 =

√
r4 + 2r2 + 16

240

[(
18
√

10m+ 16
√

15
)

arctan

(
r
√

10 +
√

15

5

)

+
(
18
√

10m− 16
√

15
)

arctan

(
r
√

10−
√

15

5

)

+ 15
√

6m ln
r2 + r

√
6 + 4

r2 − r
√

6 + 4
− 18
√

10πm

]
. (50)

For m = 0 all these functions are even and the spacetime is a symmetric worm-
hole or the corresponding topological geon — the quotient spacetime by the isom-
etry r → −r. There are no stable circular orbits, but for any J > 0 there exists
an unstable circular orbit placed at r = 0, that is, in the throat of the wormhole or
on the threshold hypersurface of the geon where Veff has a unique maximum. For
m > 0, a number of results related to the innermost circular orbits are illustrated
in Figures 3 – 7.

In the interval of masses 0 < m 6 mc, mc ≈ 0.2254, there are ISCOs of the
second kind (see Figures 4, 5 and 6). For m > mc the corresponding black holes
have ISCOs only of the first kind, as can be seen from Figures 7. In any case, the
curve J2(r) versus orbital radius r has a unique minimum which may be negative,
zero, or positive; the latter corresponds to black holes with the ISCO of the first
kind. Negative values of J2 are unphysical. Also, it follows from the expression (47)
and the asymptotic relation (22) that in any case J2 = mr+3m2 +o(1) as r → +∞,
and J2 → +∞ as r → 3m from the right. The function rISCO(m) has a unique
minimum at m = mc and goes to infinity as m → +0 or m → +∞, as shown in
Figure 8.

C =
(
r4 + 2r2 + 16

)1/4
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Figure 3: The wormhole (or the corresponding topological geon) is determined by the

even function C(r). The field φ, obtained by integrating (49), obeys the asymptotic

conditions φ→ 0 as r → +∞ and φ→ 2.996 as r → −∞.
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Figure 4: The black hole (48) – (50) with m = 0.01. The corresponding ISCO has

JISCO = 0, rISCO = 7.820, that is, it is of the second kind. Stable circular orbits exist for

any J > 0. For 0.0450 > r > 0.03 = 3m there also exist unstable circular orbits for which

J → +∞ as r → 3m+ 0. The inset shows the typical global behaviour (for J = 0, as an

example) of the potential which reaches a maximum and then goes to zero as r goes to

the horizon (rh = −8.136) from the right.
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Figure 5: The black hole (48) – (50) with m = 0.2 is qualitatively similar to the previous

one with m = 0.01. Now JISCO = 0, rISCO = 2.062, rh = −1.364, and unstable circular

orbits exist for 1.038 > r > 0.6 = 3m.
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Figure 6: The black hole (48) – (50) with the transition mass m = mc = 0.2254 has

the ISCO parameters JISCO = 0 and rISCO = rc = 1.512; the latter is an inflection point

of the effective potential. In the intervals of masses m > mc and 0 < m 6 mc, the

corresponding ISCOs are, respectively, of the first and second kind.
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Figure 7: The black hole (48) – (50) with m = 0.3 > mc. The corresponding ISCO (of

the first kind) has the parameters JISCO = 0.7973 and rISCO = 1.984. Stable circular

orbits exist for any J > JISCO.
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Figure 8: On the left: the function rISCO(m) has a unique minimum rc = 1.512 at

m = mc = 0.2254 and goes to infinity as m goes to zero or infinity. On the right:

J2
ISCO(m) goes to infinity as m goes to infinity. Both curves have a cusp at m = mc.

.6 Concluding remarks

In this article we have presented a general method for studying circular orbits, par-
ticularly ISCOs, around static, spherically symmetric scalar field configurations,
both for classical and phantom scalar fields minimally coupled to gravity. A key
feature of the method is its independence from the form of the self-interaction po-
tential. In the direct problem for the Einstein-Klein-Gordon equations, one has
previously to define the self-interaction potential, to impose asymptotic conditions,
and also then to find solutions. Instead we use the quadrature formulas for the
metric functions, which gives us rich possibilities to model scalar hairy configura-
tions in terms of a very small number of parameters or the area metric function
(which has a very simple behaviour), in the cases of classical and phantom scalar
fields respectively. This approach in turn have enabled us to study circular orbits
around scalar hairy configurations in general, that is, in some sense for all admis-
sible potentials at the same time. In particular, we have found that there exist
two kinds of ISCOs, with nonzero and zero specific angular momentum of a test
particle, referred to as the first and second kinds respectively.

Classical scalar field black holes have ISCOs only of the first kind. It is well-
known that the Schwarzschild naked singularities have negative masses and have
no circular orbits at all. On the contrary, classical scalar field naked singularities
of general type have positive masses, circular orbits, and ISCOs of the second
kind; some fine-tuning naked singularities and regular configurations have stable
circular orbits of any positive radius, that is, do not have ISCOs. Black holes
supported by phantom scalar fields can have ISCOs of both the kind depending
on the Schwarzschild mass. In a family of black holes with one and the same area
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function, the ISCOs are of the second kind for small values of the mass, while they
are of the first kind for masses greater than some intermediate value.

We hope that systematic investigations of scalar hairy object and circular orbits
around them are physically motivated and will be practically useful in astronomical
observations in the near future. In this connection it would also be interesting to
study a number of important mathematical questions which have not been con-
sidered in the article: for example, whether the effective potential of a black hole
with classical scalar hair can have more than two extremums. In other words, there
remains the question of the existence of two different stable circular orbits with one
and the same specific angular momentum of a test particle.

.References

[1] Vincent F H, Paumard T, Perrin G, et al. Performance of astrometric detection
of a hotspot orbiting on the innermost stable circular orbit of the galactic centre
black hole. Mon. Not. R. Astron. Soc. 2011, 412, pp. 2653–2664
(arXiv: astro-ph/1011.5439)

[2] McClintock J E, Narayan R, Davis S W, et al. Measuring the spins of accreting
black holes. Class. Quantum Grav. 2011, 28 , 114009, 17pp
(arXiv: astro-ph/1101.0811)

[3] Torres D F. Accretion disc onto a static non-baryonic compact object. Nucl.
Phys. B 2002, 626, pp. 377 – 391 (arXiv: hep-ph/0201154)

[4] Abramowicz M A, Jaroszynski M, Kato S, et al. Leaving the ISCO: the in-
ner edge of a black-hole accretion disk at various luminosities. Astronomy &
Astrophysics 2010, 521, A15, 12pp. (arXiv: astro-ph/1003.3887)

[5] Chandrasekhar S. Mathematical theory of black holes. Cambridge University
Press, Cambridge, UK, 2001

[6] Schunck F E. A matter model for dark halos of galaxies and quasars. Fermilab
preprint, FNAL FPRINT-95-10, 1994

[7] Matos T and Guzmán F S. On the spacetime of a galaxy. Class. Quantum
Grav. 2001, 18, pp. 5055 – 5064 (arXiv: gr-qc/0108027)

[8] Mielke E W, Fuchs B and Schunck F E. Dark matter halos as Bose-Einstein
condensates, 2006, (arXiv: astro-ph/0608526)

[9] Schunck F E and Mielke E W. General relativistic boson stars. Class. Quantum
Grav. 2003, 20, pp. 301 – 356 (arXiv: astro-ph/0801.0307)

[10] Fisher I Z. Scalar mesostatic field with regard for gravitational effects. Zh.
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