ΛCDM vs multidimensional model in describing cosmological acceleration

G. S. Sharov and E. G. Vorontsova

Faculty of Mathematics, Tver State University, Sadovyi per. 35, Tver, Russia

e-mail: german.sharov@mail.ru

Received 13 January 2015. Published 27 January 2015.

Abstract. We consider observational manifestations of accelerated expansion of the Universe, in particular, recent data for type Ia supernovae, baryon acoustic oscillations and for the Hubble parameter $H(z)$ depending on redshift. We compare two models describing the mentioned observations: the ΛCDM model and the multidimensional model of I. Pahwa, D. Choudhury and T.R. Seshadri. For these models we calculate χ^2 functions for all measured effects, estimate optimal values of model parameters and their permissible errors.

Keywords: accelerated expansion, Hubble parameter, baryon acoustic oscillations, extra dimensions

MSC numbers: 83E15, 83F05

© The author(s) 2015. Published by Tver State University, Tver, Russia
1. Introduction

The accelerated expansion of our Universe is the most important discovery of last 20 years in astrophysics and explanation of this acceleration is the most urgent problem in modern cosmology. The first evidence of accelerated expansion resulted from Type Ia supernovae observations [1, 2].

Supernovae are stars which catastrophically explode with giant energy release and creation the expanding shell (the supernova remnant). All supernovae are divided into Type I with hydrogen-deficient optical spectrum and Type II with bright spectral hydrogen lines. The subdivision Type Ia in Type I is characterized by strong absorption near the silicon line 615 nm. Type Ia supernovae are believed to result from the thermonuclear ignition and disruption of carbon-oxygen white dwarfs while Type II come from core collapse of supergiant stars [3].

The peak luminosity of the supernova is up to 10^8 times brighter than before explosion, time dependence of the star’s brightness (the light curve) gives possibility to estimate its absolute luminosity and to attribute this supernova to some class [3]. Type Ia supernovae have rather small dispersion among their peak absolute magnitudes, for these objects we can independently measure redshifts z and luminosity distances D_L, so Type Ia supernovae play a role of standard candles in the Universe.

Further observations of supernovae [4, 5], cosmic microwave background anisotropy [6], baryon acoustic oscillations [5, 7] and other observations [5, 6, 8] confirmed accelerated growth of the cosmological scale factor $a(t)$ at late stage of its evolution.

Baryon acoustic oscillations (BAO) are connected with propagation of acoustic waves in the relativistic plasma before the recombination epoch [5, 7]. These waves involved baryons coupled with photons up to the end of the drag era corresponding to $z_d \simeq 1059.3$ [8], then baryons became decoupled, the sound speed was abruptly decreased and the wave propagation was ended.

This effect may be observed as disturbances in the cosmic microwave angular power spectrum or as a peak in the correlation function of the galaxy distribution at the comoving sound horizon scale $r_s(z_d)$ [7, 8]. Observations of the BAO effect result in various manifestations [7]–[26], in particular, in estimations of the Hubble parameter $H(z)$ for different redshifts z [15]–[26] (details are in Sect. 2).

The mentioned recent observations of Type Ia supernovae, BAO effect and $H(z)$ estimates give stringent restrictions on possible cosmological theories and models. To satisfy these observational restrictions all models are to describe accelerated expansion of the Universe with definite parameters [27, 28].

The standard Einstein theory of gravitation predicts expansion of the Universe with deceleration corresponding $a''(t) < 0$. So to explain observed accelerated expansion, we are to modify the Einstein gravity. A lot of such modifications and alternative cosmological models have been suggested [27, 28]. The most simple modification is to use a Λ term (dark energy) resulting in cosmological solutions with acceleration. The corresponding model with cold dark matter in addition to deficient visible matter is now the most popular $ΛCDM$ cosmological model (the $Λ$
CDM vs multidimensional model

This model with appropriate parameters [5, 6, 8] successfully describes practically all observational data, in Sect. 3 we apply this model to describe the updated recent observations of Type Ia supernovae, BAO effects and $H(z)$ estimates.

One should note that there are some problems in the ΛCDM model, in particular, ambiguous nature of dark matter and dark energy, the problem of fine tuning for the observed value of Λ and the coincidence problem for surprising proximity Ω_Λ and Ω_m nowadays [27, 28].

Therefore cosmologists suggested many alternative models with nontrivial equations of state, with $f(R)$ Lagrangian, scalar fields, additional space dimensions and many others [27, 28, 29]. In particular, in Sect. 4 of this paper we consider in detail the multidimensional gravitational model of I. Pahwa, D. Choudhury and T.R. Seshadri [30] and the modified variant of this model [31, 32]. We compare predictions of these models and the ΛCDM model in describing recent data for Type Ia supernovae, BAO, $H(z)$ updated with respect to Ref. [32].

2. Observational data

The latest observational data on Type Ia supernovae were collected in the paper (and in the site) [4] after the Union2.1 satellite investigation. This data is the table including redshifts $z = z_i$ and distance moduli μ_i with errors σ_i for $N_S = 580$ supernovae. The distance modulus $\mu_i = \mu(D_L) = 5 \log_{10} \left(\frac{D_L}{10 \text{pc}} \right)$ is logarithm of the luminosity distance [8, 27]:

$$D_L(z) = \frac{c(1+z)}{H_0} S_k \left(H_0 \int_0^z \frac{dz'}{H(z')} \right),$$ \hspace{1cm} (1)

Here

$$S_k(x) = \begin{cases} \sinh \left(x \sqrt{\Omega_k} \right) / \sqrt{\Omega_k}, & \Omega_k > 0, \\ x, & \Omega_k = 0, \\ \sin \left(x \sqrt{|\Omega_k|} \right) / \sqrt{|\Omega_k|}, & \Omega_k < 0; \end{cases}$$

redshift z and the Hubble parameter $H(z)$ are connected with the scale factor $a(t)$:

$$a(t) = \frac{a_0}{1+z}, \quad H(z) = \frac{\dot{a}(t)}{a(t)},$$ \hspace{1cm} (2)

k is the sign of curvature, $\Omega_k = -k/(a_0^2 H_0^2)$ is its present time fraction, $a_0 \equiv a(t_0)$ and $H_0 \equiv H(t_0)$ are the current values of a and H.

We use the luminosity distance (1) and $H(z)$ to calculate the distance [6, 7, 8]

$$D_V(z) = \left[\frac{cz D_L^2(z)}{(1+z)^2 H(z)} \right]^{1/3},$$ \hspace{1cm} (3)

and two measured values

$$d_z(z) = \frac{r_s(z_d)}{D_V(z)}, \quad A(z) = \frac{H_0 \sqrt{\Omega_m}}{cz} D_V(z),$$ \hspace{1cm} (4)
which are usually considered as observational manifestations of baryon acoustic oscillations (BAO) [7, 6]. Here \(\Omega_m = \frac{8 \pi G \rho(t_0)}{H^2_0} \) is the present time fraction of matter with density \(\rho \). The value \(r_s(z_d) \) in Eq. (4) is sound horizon size at the end of the drag era \(z_d \approx 1059.3 \) [8]. Below we use

\[
r_s(z_d) = 150.51 \pm 3.11 \text{ Mpc},
\]

that is the arithmetic average of the following recent estimations: \(r_s(z_d) = 147.4 \) [26], 147.49 [8, 25], 148.2 [14], 153.19 [23], 153.3 [11], 153.5 [10].

In this paper we consider 14 data points for \(d_z(z) \) (7 recent points in addition to 7 ones in Ref. [32]) and 7 data points for \(A(z) \) presented in the following table:

Table 1: Values of \(d_z(z) = r_s(z_d)/D_V(z) \) and \(A(z) \) (4) with errors [6] – [26]

<table>
<thead>
<tr>
<th>(z)</th>
<th>(d_z(z))</th>
<th>(\sigma_d)</th>
<th>(A(z))</th>
<th>(\sigma_A)</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.106</td>
<td>0.336</td>
<td>0.015</td>
<td>0.526</td>
<td>0.028</td>
<td>[6] 6dFGS</td>
</tr>
<tr>
<td>0.15</td>
<td>0.2232</td>
<td>0.0084</td>
<td>-</td>
<td>-</td>
<td>[14] SDSS DR7</td>
</tr>
<tr>
<td>0.20</td>
<td>0.1905</td>
<td>0.0061</td>
<td>0.488</td>
<td>0.016</td>
<td>[6] SDSS LRG</td>
</tr>
<tr>
<td>0.275</td>
<td>0.1390</td>
<td>0.0037</td>
<td>-</td>
<td>-</td>
<td>[9] SDSS DR7</td>
</tr>
<tr>
<td>0.278</td>
<td>0.1394</td>
<td>0.0049</td>
<td>-</td>
<td>-</td>
<td>[10] SDSS DR7</td>
</tr>
<tr>
<td>0.314</td>
<td>0.1239</td>
<td>0.0033</td>
<td>-</td>
<td>-</td>
<td>[11] WiggleZ</td>
</tr>
<tr>
<td>0.32</td>
<td>0.1181</td>
<td>0.0023</td>
<td>-</td>
<td>-</td>
<td>[13] BOSS DR11</td>
</tr>
<tr>
<td>0.35</td>
<td>0.1097</td>
<td>0.0036</td>
<td>0.484</td>
<td>0.016</td>
<td>[9] SDSS DR7</td>
</tr>
<tr>
<td>0.35</td>
<td>0.1126</td>
<td>0.0022</td>
<td>-</td>
<td>-</td>
<td>[6] SDSS DR7</td>
</tr>
<tr>
<td>0.44</td>
<td>0.0916</td>
<td>0.0071</td>
<td>0.474</td>
<td>0.034</td>
<td>[11] WiggleZ</td>
</tr>
<tr>
<td>0.57</td>
<td>0.07315</td>
<td>0.0012</td>
<td>0.436</td>
<td>0.017</td>
<td>[6, 12] SDSS DR9</td>
</tr>
<tr>
<td>0.60</td>
<td>0.0726</td>
<td>0.0034</td>
<td>0.442</td>
<td>0.020</td>
<td>[11] WiggleZ</td>
</tr>
<tr>
<td>0.73</td>
<td>0.0592</td>
<td>0.0032</td>
<td>0.424</td>
<td>0.021</td>
<td>[11] WiggleZ</td>
</tr>
<tr>
<td>2.34</td>
<td>0.0320</td>
<td>0.00068</td>
<td>-</td>
<td>-</td>
<td>[26] BOSS DR11</td>
</tr>
</tbody>
</table>

For any cosmological model we fix its model parameters \(p_1, p_2, \ldots \), calculate dependence \(a(t) \), the integral (1) and this model predicts theoretical values \(D_L^{th} \) for luminosity distance (1) (for given \(z \)), or \(\mu^{th} \) for modulus, \(d_z^{th} \) and \(A^{th} \) for parameters (4). Then we are to compare these theoretical values with the observational data \(z_i \) and \(\mu_i \) from the table [4] or with \(d_z(z_i) \) and \(A(z_i) \) from Table 1.

For this purpose and also for achievement a good fit between theoretical predictions and the observed data we use the \(\chi^2 \) function, in particular, for the Type Ia supernovae data [4] in the form

\[
\chi^2_S(p_1, p_2, \ldots) = \sum_{i=1}^{N_S} \frac{[\mu_i - \mu^{th}(z_i, p_1, p_2, \ldots)]^2}{\sigma_i^2}.
\]
We search minimum of χ^2 in the space of model parameters p_1, p_2, \ldots or the maximum of the corresponding likelihood function $L_S(p_1, p_2, \ldots) = \exp(-\chi^2_S/2)$.

Measurements of $d_\perp(z)$ and $A(z)$ from Ref. [11] in Table 1 are not independent (unlike the mentioned supernovae data). So the χ^2 function for the values (4) is

$$\chi^2_B(p_1, p_2, \ldots) = (\Delta d)^T C^{-1}_d \Delta d + (\Delta A)^T C^{-1}_A \Delta A, \quad \Delta d = d_\perp(z_i) - d_\perp^th.$$ \hfill (7)

The elements of covariance matrices C^{-1}_d and C^{-1}_A with $i, j = 10, 12, 13$ in Eq. (7) are $[6, 11]$:

$$c^d_{100} = 24532.1, \quad c^d_{102} = -25137.7, \quad c^d_{103} = 12099.1, \quad c^d_{122} = 134598.4,$$
$$c^d_{123} = -64783.9, \quad c^d_{133} = 128837.6; \quad c^A_{100} = 1040.3, \quad c^A_{102} = -807.5,$$
$$c^A_{103} = 336.8, \quad c^A_{122} = 3720.3, \quad c^A_{123} = -1551.9, \quad c^A_{133} = 2914.9.$$

Here $c_{ij} = c_{ji}$, the remaining matrix elements are $c_{ii} = 1/\sigma_i^2$, $c_{ij} = 0$, $i \neq j$.

Measurements of the Hubble parameter $H(z)$ for different redshifts z \cite{15} – \cite{26} with 34 data points are presented in the following table:

<table>
<thead>
<tr>
<th>z</th>
<th>$H(z)$</th>
<th>σ_H</th>
<th>Refs</th>
<th>z</th>
<th>$H(z)$</th>
<th>σ_H</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.070</td>
<td>69</td>
<td>19.6</td>
<td>[19]</td>
<td>0.57</td>
<td>92.9</td>
<td>7.855</td>
<td>[23]</td>
</tr>
<tr>
<td>0.090</td>
<td>69</td>
<td>12</td>
<td>[15]</td>
<td>0.593</td>
<td>104</td>
<td>13</td>
<td>[17]</td>
</tr>
<tr>
<td>0.120</td>
<td>68.6</td>
<td>26.2</td>
<td>[19]</td>
<td>0.600</td>
<td>87.9</td>
<td>6.1</td>
<td>[18]</td>
</tr>
<tr>
<td>0.170</td>
<td>83</td>
<td>8</td>
<td>[15]</td>
<td>0.680</td>
<td>92</td>
<td>8</td>
<td>[17]</td>
</tr>
<tr>
<td>0.179</td>
<td>75</td>
<td>4</td>
<td>[17]</td>
<td>0.730</td>
<td>97.3</td>
<td>7.0</td>
<td>[18]</td>
</tr>
<tr>
<td>0.199</td>
<td>75</td>
<td>5</td>
<td>[17]</td>
<td>0.781</td>
<td>105</td>
<td>12</td>
<td>[17]</td>
</tr>
<tr>
<td>0.200</td>
<td>72.9</td>
<td>29.6</td>
<td>[19]</td>
<td>0.875</td>
<td>125</td>
<td>17</td>
<td>[17]</td>
</tr>
<tr>
<td>0.240</td>
<td>79.69</td>
<td>2.65</td>
<td>[22]</td>
<td>0.880</td>
<td>90</td>
<td>40</td>
<td>[16]</td>
</tr>
<tr>
<td>0.270</td>
<td>77</td>
<td>14</td>
<td>[15]</td>
<td>0.900</td>
<td>117</td>
<td>23</td>
<td>[15]</td>
</tr>
<tr>
<td>0.280</td>
<td>88.8</td>
<td>36.6</td>
<td>[19]</td>
<td>1.037</td>
<td>154</td>
<td>20</td>
<td>[17]</td>
</tr>
<tr>
<td>0.300</td>
<td>81.7</td>
<td>6.22</td>
<td>[24]</td>
<td>1.300</td>
<td>168</td>
<td>17</td>
<td>[15]</td>
</tr>
<tr>
<td>0.350</td>
<td>82.7</td>
<td>8.4</td>
<td>[21]</td>
<td>1.430</td>
<td>177</td>
<td>18</td>
<td>[15]</td>
</tr>
<tr>
<td>0.352</td>
<td>83</td>
<td>14</td>
<td>[17]</td>
<td>1.530</td>
<td>140</td>
<td>14</td>
<td>[15]</td>
</tr>
<tr>
<td>0.400</td>
<td>95</td>
<td>17</td>
<td>[15]</td>
<td>1.750</td>
<td>202</td>
<td>40</td>
<td>[15]</td>
</tr>
<tr>
<td>0.430</td>
<td>86.45</td>
<td>3.68</td>
<td>[22]</td>
<td>2.300</td>
<td>224</td>
<td>8</td>
<td>[20]</td>
</tr>
<tr>
<td>0.440</td>
<td>82.6</td>
<td>7.8</td>
<td>[18]</td>
<td>2.340</td>
<td>222</td>
<td>7</td>
<td>[26]</td>
</tr>
<tr>
<td>0.480</td>
<td>97</td>
<td>62</td>
<td>[16]</td>
<td>2.360</td>
<td>226</td>
<td>8</td>
<td>[25]</td>
</tr>
</tbody>
</table>

These values $H(z)$ were calculated with evaluation of the age difference for galaxies with close redshifts via the formula $H(z) = \frac{1}{a(t)} \frac{da}{dt} = -\frac{1}{1 + z \frac{dz}{dt}}$ (resulting from Eq. (2)) in Refs. [15] – [21] or from BAO analysis [22] – [26].
3. ΛCDM model

For the ΛCDM model the Einstein equations

\[G^\mu_\nu = 8\pi G T^\mu_\nu + \Lambda \delta^\mu_\nu, \]

(8)

determine dynamics of the Universe. Here \(G^\mu_\nu = R^\mu_\nu - \frac{1}{2}R \delta^\mu_\nu \) is the Einstein tensor,

\[T^\mu_\nu = \text{diag}\left(-\rho, p, p, p\right) \]

(9)

is the energy momentum tensor. In this model baryonic and dark matter may be considered as one component of dust-like matter with density \(\rho = \rho_b + \rho_{dm} \), so we suppose \(p = 0 \) in Eq. (9). The fraction of relativistic matter (radiation and neutrinos) is close to zero for observable values \(z \leq 2.36 \).

For the Robertson-Walker metric with the curvature sign \(k \)

\[ds^2 = -dt^2 + a^2(t) \left[(1 - kr^2)^{-1}dr^2 + r^2d\Omega \right] \]

(10)

the Einstein equations (8) are reduced to the system

\[3\frac{\dot{a}^2 + k}{a^2} = 8\pi G \rho + \Lambda, \]

(11)

\[\dot{\rho} = -3\frac{\dot{a}}{a}(\rho + p). \]

(12)

Eq. (12) results from the continuity condition \(T^\mu_\nu = 0 \), the dot denotes the time derivative, here and below the speed of light \(c = 1 \).

For dust-like matter with pressure \(p = 0 \) we use the solution \(\rho/\rho_0 = (a/a_0)^{-3} \) of Eq. (12) and rewrite the remaining equation Eq. (11) in the form

\[\frac{\dot{a}^2}{a^2 H_0^2} = \frac{H^2}{H_0^2} = \Omega_m \left(\frac{a}{a_0}\right)^{-3} + \Omega_\Lambda + \Omega_k \left(\frac{a}{a_0}\right)^{-2}. \]

(13)

Here the present time fractions of matter, dark energy (\(\Lambda \) term) and curvature

\[\Omega_m = \frac{8\pi G \rho(t_0)}{3H_0^2}, \quad \Omega_\Lambda = \frac{\Lambda}{3H_0^2}, \quad \Omega_k = -\frac{k}{a_0^2 H_0^2} \]

(14)

are connected by the equality

\[\Omega_m + \Omega_\Lambda + \Omega_k = 1, \]

(15)

resulting from Eq. (13) if we fix \(t = t_0 \).

We solve the equation (13) with the natural initial condition at the present time \(a(t_0) = a_0 \) and three fixed model parameters \(H_0, \Omega_m \) and \(\Omega_\Lambda \). As the result we calculate the values \(a(t)/a_0, H(t), H(z), \) and also \(D_L(z) \) (1), \(d_z(z) \) and \(A(z) \) (4).
Further we compare them with the observational data from Ref. [4] and Tables 1, 2 with the help of the χ^2 functions (6), (7) and their analog

$$\chi^2_H(p_1, p_2, \ldots) = \sum_{i=1}^{N_H} \frac{[H_i - H^{th}(z_i, p_1, p_2, \ldots)]^2}{\sigma_{H,i}^2}. \quad (16)$$

Here $N_H = 34$ for all data points in Table 2.

If we introduce dimensionless time τ and logarithm of the scale factor [30, 31]

$$\tau = H_0 t, \quad A = \log \frac{a}{a_0}, \quad (17)$$

equation (13) will take the form

$$\frac{dA}{d\tau} = \sqrt{\Omega_m e^{-3A} + \Omega_\Lambda + \Omega_k e^{-2A}},$$

more convenient for numerical solving with the initial condition $A|_{\tau=1} = 0$. Here and below the present time $t = t_0$ corresponds to $\tau = 1$.

To describe the considered observational data we use the mentioned three independent parameters H_0, Ω_m and Ω_Λ in Eq. (13) of the ΛCDM model. The curvature fraction Ω_k is expressed from Eq. (15). The Hubble constant H_0 is the very important parameter in all cosmological models, but different approaches result in wide spread of its estimations. In particular, the satellite projects Planck Collaboration (Planck) [8], Wilkinson Microwave Anisotropy Probe (WMAP) [6] and Hubble Space Telescope (HST) [33] give the following values (in km c$^{-1}$Mpc$^{-1}$):

$$H_0 = 67.3 \pm 1.2 \text{ (Planck) [8], } \quad 69.7 \pm 2.4 \text{ (WMAP) [6], } \quad 73.8 \pm 2.4 \text{ (HST) [33].} \quad (18)$$

The best fits for parameters H_0, Ω_m and Ω_Λ of the ΛCDM model was calculated in many papers, in particular, in Refs. [6, 8, 34, 35, 36, 37] for describing the Type Ia supernovae, $H(z)$ and BAO data in various combinations. The authors [36, 37] compared the ΛCDM model with the XCDM and ϕCDM models. They fixed two values of the Hubble constant $H_0 = 68 \pm 2.8$ and $H_0 = 73.8 \pm 2.4$ km c$^{-1}$Mpc$^{-1}$ [33] and searched optimal choice of other model parameters. But they did not estimated the segment between these two values of H_0. The authors [35] compared 8 models with two information criteria including minimal χ^2 and the number of model parameters. They calculated optimal values of these parameters with the exception of H_0, though H_0 is the important parameter for all 8 models.

In this paper we study in detail the dependence of the χ^2 minimal value on H_0. This dependence is very important if we compare different cosmological models.

We present the results of calculations as level lines for the function $\chi^2(p_1, p_2)$ in a plane of two parameters, for example, $\chi^2(\Omega_m, \Omega_\Lambda)$, if H_0 is fixed (see Fig. 1). In accordance with usual approach [6, 8, 34, 35, 36, 37] we draw level lines for $\chi^2(p_1, p_2)$ or $L(p_1, p_2) = \exp(-\chi^2/2)$ at $1\sigma (68.27\%), 2\sigma (95.45\%)$ and $3\sigma (99.73\%)$ confidence levels.
In Fig. 1 we use this scheme for 3 fixed values H_0 indicated on the panels (2 values (18) and the optimal value $H_0 = 70.20 \text{ km} \text{ c}^{-1} \text{Mpc}^{-1}$). If H_0 is fixed, we draw level lines of functions (6), (7), (16) (the top panels in Fig. 1) and their sum

$$\chi^2_{\Sigma} = \chi^2_{\Sigma} + \chi^2_{H} + \chi^2_{B}$$

(19)

the second row of panels) as functions of two remaining parameters Ω_m and Ω_{Λ}.

In the right third panel we fix the optimal value $\Omega_{\Lambda} = 0.769$ and draw level lines for $\chi^2_{\Sigma}(\Omega_{m}, H_0)$, in the right bottom panel for fixed $\Omega_m = 0.276$ we present level lines for $\chi^2_{\Sigma}(\Omega_{\Lambda}, H_0)$.

Figure 1: The ΛCDM model. For 3 indicated values H_0 level lines are drawn at 1σ, 2σ and 3σ (thick solid) for $\chi^2_{\Sigma}(\Omega_{m}, \Omega_{\Lambda})$ (black), for $\chi^2_{H}(\Omega_{m}, \Omega_{\Lambda})$ (green) and $\chi^2_{B}(\Omega_{m}, \Omega_{\Lambda})$ (red in the top line), the sum (19) $\chi^2_{\Sigma}(\Omega_{m}, \Omega_{\Lambda})$ (the second row), $\chi^2_{\Sigma}(\Omega_{m}, H_0)$ for $\Omega_{\Lambda} = 0.758$ and $\chi^2_{\Sigma}(\Omega_{\Lambda}, H_0)$ for $\Omega_m = 0.276$ (the bottom-right panels); dependence of min χ^2_{Σ} (blue thick lines), its fractions χ^2 and parameters of a minimum point on H_0, Ω_m and on Ω_{Λ}.

In these panels of Fig. 1 the points of minima are marked in as hexagrams for
Σ^2, pentagrams for χ^2_H, diamonds for χ^2_B and circles for χ^2_Σ.

Minimal values of the function χ^2_Σ (19) for 3 values H_0 (18) and for the optimal value $H_0 = 70.2$ are tabulated in Table 3 so we can compare efficiency of this description for different H_0. For the same purpose we point out the corresponding values for some level lines of χ^2_Σ and present the dependence of the minimum $\min \chi^2_\Sigma = \min_{\Omega_m, \Omega_\Lambda} \chi^2_\Sigma(H_0)$ on H_0 in the left third panel of Fig. 1. We also show in this panel graphs of the fractions χ^2_Σ (the black dashed line), χ^2_H (the green dash-and-dot line), χ^2_B (the red line) in the value $\min \chi^2_\Sigma(H_0)$.

We see in Fig. 1 and in Table 3 that the dependence of $\min \chi^2_\Sigma(H_0)$ is significant. This function has the distinct minimum and achieves its minimal value 593.91 at $H_0 \simeq 70.2$ km c$^{-1}$Mpc$^{-1}$ and the following optimal parameters:

$$\Lambda CDM: \quad H_0 = 70.20, \quad \Omega_m = 0.276, \quad \Omega_\Lambda = 0.769, \quad \Omega_k = -0.045. \quad (20)$$

This point of minimum lies between the values $H_0 = 68$ and $H_0 = 73.8$ km c$^{-1}$Mpc$^{-1}$ chosen in Refs. [36, 37], so that choice was unsuccessful.

The sharp dependence of $\min \chi^2_\Sigma$ on H_0 is connected with two factors: (1) the similar dependence of the main contribution $\chi^2_\Sigma(H_0)$ shown in the same panel as the black dashed line; (2) the large shift of the minimum point for χ^2_Σ in the Ω_m, Ω_Λ plane corresponding to H_0 growth (see the top line in Fig. 1). For $H_0 = 67.3$ and 73.8 km c$^{-1}$Mpc$^{-1}$ this minimum point is far from the similar points of χ^2_H and χ^2_B. Only for H_0 close to 70 km c$^{-1}$Mpc$^{-1}$ all these three minimum points (hexagrams, pentagrams and diamonds in Fig. 1) are close to each other.

In other two panels in the third line of Fig. 1 we present how minima $\min \chi^2_\Sigma$ depend on Ω_m and on Ω_Λ. Here $\min \chi^2_\Sigma(\Omega_m) = \min_{H_0, \Omega_\Lambda} \chi^2_\Sigma, \min \chi^2_\Sigma(\Omega_\Lambda) = \min_{\Omega_m, H_0} \chi^2_\Sigma$; graphs of the fractions χ^2_S, χ^2_H, χ^2_B in $\min \chi^2_\Sigma$ are also shown.

In the bottom panels of Fig. 1 we demonstrate how parameters of a minimum point of χ^2_Σ depend on H_0, Ω_m and on Ω_Λ. The parameter Ω_k is determined from Eq. (15): $\Omega_k = 1 - \Omega_m - \Omega_\Lambda$. When we vary parameters Ω_m and Ω_Λ, we also draw the graphs $h(\Omega_m)$ and $h(\Omega_\Lambda)$, where $h = H_0/100$ and H_0 is the optimal value corresponding to the minimum point of χ^2_Σ.

Fig. 1 demonstrates that dependencies of $\min \chi^2_\Sigma$ on Ω_m and Ω_Λ have the same sharp minimum as for $\min \chi^2_\Sigma(H_0)$. The most distinct minimum we see for dependence $\min \chi^2_\Sigma$ on Ω_m because of the correspondent dependence of its fraction χ^2_B (the red line). This fact for χ^2_B is connected with the contribution from the value $A(z)$ (4) measurements, because $A(z)$ is proportional to $\sqrt{\Omega_m}$ and χ^2_B is very sensitive to Ω_m values. Note that the fractions χ^2_S and χ^2_H (in $\min \chi^2_\Sigma$) weakly depend on Ω_m.

In the 2-nd row panels of Fig. 1 with χ^2_Σ the flatness line $\Omega_m + \Omega_\Lambda = 1$ (or $\Omega_k = 0$) is shown as the black dashed straight line. This line demonstrates that only for H_0 close to 70 km c$^{-1}$Mpc$^{-1}$ the ΛCDM model satisfies on 1σ or 2σ level
the following recent observational limitations on the parameters (14) [6, 8]:

\[
\begin{align*}
\Omega_m &= 0.279 \pm 0.025, & \Omega_m &= 0.314 \pm 0.02 \\
\Omega_\Lambda &= 0.721 \pm 0.025, & \Omega_\Lambda &= 0.686 \pm 0.025, \\
\Omega_k &= -0.0027^{+0.0039}_{-0.0038}, & \Omega_k &= -0.0005^{+0.0065}_{-0.0066}.
\end{align*}
\]

(21)

For \(H_0 = 67.3\) and 73.8 km c\(^{-1}\) Mpc\(^{-1}\) the optimal values of parameters \(\Omega_m, \Omega_\Lambda, \Omega_k\) in Table 3 are far from restrictions (21) even on 3\(\sigma\) level.

At the right hand side of Table 3 we tabulate the same estimations of \(\min \chi^2\) for the reduced data set satisfying the condition \(z < 2.3\). For these calculations we exclude the data points from Refs. [20, 25, 26] from Tables 1 and 2.

Table 3: The ΛCDM model. For all data points in Tables 1, 2 (left) and for 31 data points of \(H(z)\) and 13 of \(d_z(z)\) with \(z < 2.3\) (right) for 3 given \(H_0(18)\) and the optimal value \(H_0 = 70.2\) km c\(^{-1}\) Mpc\(^{-1}\) we demonstrate the calculated minima of \(\chi^2\) with \(\Omega_m, \Omega_\Lambda, \Omega_k\) correspondent to \(\min \chi^2\).

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>(N_H = 34)</th>
<th>(N_H = 31) ((z < 2.3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\min \chi^2)</td>
<td>(\Omega_m)</td>
</tr>
<tr>
<td>67.3</td>
<td>680.08</td>
<td>0.283</td>
</tr>
<tr>
<td>69.7</td>
<td>596.55</td>
<td>0.277</td>
</tr>
<tr>
<td>70.2</td>
<td>593.91</td>
<td>0.276</td>
</tr>
<tr>
<td>73.8</td>
<td>723.04</td>
<td>0.269</td>
</tr>
</tbody>
</table>

4. Multidimensional model

I. Pahwa, D. Choudhury and T.R. Seshadri in Ref. [30] suggested the multidimensional gravitational model (the PCS model in references below) with symmetry and isotropy in 3 usual spatial dimensions and in \(d\) additional dimensions. But there is anisotropy between these subspaces: matter behaves like dust in usual dimensions and has negative pressure in extra dimensions in the form [32]

\[
T_{\nu}^{\mu} = \text{diag} (-\rho, 0, 0, 0, p_e, \ldots, p_e), \quad \rho = \rho_b + \rho_e, \quad p_e = -B_0 \rho_e^{-\alpha}.
\]

(22)

In this paper we divide matter in two components following Ref. [32]: the “usual” or “baryonic” component with density \(\rho_b\) and \(p_b = 0\) (it may include a part of cold dark matter) and the “exotic” component with \(\rho_e\) and pressure \(p_e\) in extra dimensions. The “exotic” matter plays roles of both dark matter and dark energy.

For the spacetime with \(1 + 3 + d\) dimensions the metric [30]

\[
ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega \right) + b^2(t) \left(\frac{dR^2}{1 - k_R^2 R^2} + R^2 d\Omega_{d-1} \right)
\]

(23)
includes two Robertson–Walker terms with two scale factors $a(t)$, $b(t)$ and two curvature signs k, k_2 for usual in extra dimensions correspondingly.

The main advantage of this model is the natural dynamical compactification for cosmological solutions [31], in other words, the scale factor $a(t)$ grows while $b(t)$ rapidly diminishes. We suppose that the value $b(t)$ is small enough at present time.

Dynamics of the models [30, 31] results from the Einstein equations (9) with $\Lambda = 0$ and the energy momentum tensor (22). If we use the dimensionless notations (17) and

\[B = \log \frac{b}{b_0}, \quad \bar{\rho}_b = \frac{\rho_b}{\rho_{cr}}, \quad \bar{\rho}_e = \frac{\rho_e}{\rho_{cr}}, \quad \bar{\rho}_e = \frac{\rho_e}{\rho_{cr}}, \quad \rho_{cr} = \frac{3H_0^2}{8\pi G} \]

(24)

(where $b_0 = b(t_0)$) equations (9) for $k_2 = 0$ and $d > 1$ will take the form [32]:

\[A'' = \frac{1}{d+2} \left[d(d-1)B'\left(\frac{1}{2}B' - A'\right) - 3(d+1)A'^2 - 3d\bar{\rho}_e + (2d + 1)\Omega_k e^{-2A}\right], \]

(25)

\[\bar{\rho}_b = -\bar{\rho}_b(3A' + dB'), \quad \bar{\rho}_e = -3\bar{\rho}_e A' - d(\bar{\rho}_e + \bar{\rho}_e) B', \]

(26)

\[B' = (d-1)^{-1}\left[-3A' + \sqrt{3\left[(d+2)A'^2 + 2(d-1)\left(\bar{\rho} + \Omega_k e^{-2A}\right)\right]/d}. \]

(27)

In the important case $d = 1$ (omitted in Ref. [30]) we use the equation [31]

\[B' = (\bar{\rho} + \Omega_k e^{-2A})/A' - A' \]

(28)

instead of Eq. (27). The power law dependence (22) takes the form $\bar{\rho}_e = -B/\bar{\rho}_e$.

Initial conditions for the system (25)–(27) at the present time $\tau = 1$ (corresponding to $t = t_0$) are

\[\bar{\rho}|_{\tau=1} = \Omega_m, \quad \bar{\rho}_b|_{\tau=1} = \Omega_b, \quad \bar{\rho}_e|_{\tau=1} = 0, \quad A'|_{\tau=1} = 1. \]

(29)

They result from definitions (14), (17), (24) and $A'(\tau) = \frac{d}{d\tau} \log \frac{a}{a_0} = \frac{1}{H_0 a} \frac{\dot{a}}{a}$.

For the model PCS [30, 31] we have the analog of Eq. (15)

\[\Omega_m + \Omega_B + \Omega_k = 1, \]

(30)

resulting from Eqs. (27) or (28) at $\tau = 1$. Here $\Omega_B = -d\left(\frac{B'}{\rho_{cr}} + \frac{d-1}{6}B'^2\right)|_{\tau=1}$ is the contribution from d extra dimensions.

If we solve numerically the system (25)–(28) with given initial conditions (29), we obtain functions $a(\tau)$, $b(\tau)$, $\rho(\tau)$, describing this cosmological solution. These solutions with optimal parameters from Table 4 for the PCS model with $d = 1$ and $d = 2$ (in comparison with the ΛCDM model) are shown in Fig. 2.

Cosmological solutions in the PCS model are divided into two classes [31]: regular solutions describe the standard Big Bang with the scale factor a starting from $a = 0$ (this point corresponds to infinite values of b and ρ), singular solutions start from nonzero a, corresponding to $\rho \to \infty$ and $b = 0$. So singular solutions are not physical.
Figure 2: Cosmological solutions for the models ΛCDM (black dashed lines), PCS with $d = 1$ (red lines) and $d = 2$ (blue dash-and-dot lines) with the optimal values of model parameters (20) and from Table 4: the scale factors (a) $a(\tau)$, (b) $b(\tau)$; (c) the distance (3) $D_V(z)$ with the data points from Table 1 (d) the luminosity distance $D_L(z)$ and the Type Ia supernovae data [4]; (e) dependence $H(z)$ with the data points from Table 2.

In Fig. 2 red and blue lines describe regular solutions with $d = 1$ and $d = 2$ and parameters from Table 4; whereas the violet dashed lines describe the singular solution with $d = 1$ and the following parameters: $H_0 = 69.45$, $\Omega_m = 0.286$, $\Omega_b = 0.047$, $\Omega_k = -0.08$, $\alpha = -0.26$, $B = 2.17$. Here only the value B differs from the optimal value in Table 4 (the regular solution with these optimal parameters is shown as the solid red lines), other values are the same.

On can see in Fig. 2 that predictions of the PCS model with $d = 1$ (solid red lines) and with $d = 2$ (blue dash-and-dot lines) with parameters from Table 4 (all data) are very close to the black dashed curves, corresponding to the ΛCDM model with parameters (20).

The PCS model has the set of model parameters H_0, Ω_b, Ω_m, Ω_k, α, B, but also it has the additional integer-valued parameter d (the number of extra dimensions). Our calculations of optimal parameters in Table 4 demonstrate that the value $d = 1$ is the most preferable for describing the observational data for supernovae, BAO and $H(z)$. So it is the case $d = 1$ that we present in detail in Fig. 3.

The parameter Ω_b in this model may include not only the visible baryon fraction, but also a part of dark matter. In 3 bottom-right panels of Fig. 3 we investigate influence of Ω_b on the model behavior, in particular, the dependence of minimum
min χ^2_{Σ} (over all other parameters) on Ω_b. The blue solid curve corresponds to all data from Tables 1, 2, the red dash-and-dot line describes only data with $z \leq 2.3$. As one can see, min χ^2_{Σ} increases when Ω_b grows, but this dependence is rather weak for small Ω_b. So for the multidimensional model PCS we fix $\Omega_b = 0.047$ that is the simple average of the WMAP $\Omega_b = 0.0464$ [6] and Planck $\Omega_b = 0.0485$ [8] estimations. The value $\Omega_b = 0.047$ is fixed in all panels of Fig. 3 (except for the mentioned 3 bottom-right panel) and really we use only 5 remaining parameters $H_0, \Omega_m, \Omega_k, \alpha, B$.

For level lines of χ^2_{Σ} and other χ^2 in the top and right panels of Fig. 3 we use the same notations as in Fig. 1. We draw these lines for $H_0 = 67.3, 73.8$ (18) and the optimal value $H_0 = 69.45$ km c$^{-1}$Mpc$^{-1}$ in the α, B plane and also level lines of χ^2_{Σ} for the optimal values of parameters (see Table 4) in $\alpha, H_0; \Omega_k, H_0$ and Ω_b, H_0 planes.

Figure 3: The PCS model with $d = 1$. For H_0 (18) and the optimal value $H_0 = 69.45$ km c$^{-1}$Mpc$^{-1}$ level lines of χ^2_{Σ} and other χ^2 are presented in α, B: $\alpha, H_0; \Omega_k, H_0$ and Ω_b, H_0 planes in notations of Fig. 1. In the bottom-left panels we analyze dependence of min χ^2_{Σ} and parameters of a minimum point on H_0, Ω_k and Ω_b.

In 6 top-left panels of Fig. 3 we draw thin purple lines dividing domain of
regular solutions on the α, B plane (below these lines) and the upper domain (for larger B) of singular solutions. The singular solutions have singularities in the past with $\rho \to \infty$ corresponding to $\alpha \neq 0$ [31], so they are nonphysical and should be excluded. Note that the optimal solutions in Table 4 lie near this border, but they are regular and describe the standard Big Bang $\rho \to \infty \leftrightarrow a \to 0$ with dynamical compactification of extra dimensions.

The dependence of $\min \chi^2_\Sigma = \min_{\Omega_m, \Omega_k, \alpha, B} \chi^2_\Sigma$ on H_0 for $d = 1$ has the distinct minimum at $H_0 \simeq 69.45$ (the solid blue line in the panel) similarly to the case of the ΛCDM model in Fig. 1. The minimal value $\min \chi^2_\Sigma \simeq 598.08$ for $d = 1$ is larger than $\min \chi^2_\Sigma = 593.91$ (20) for the ΛCDM model; and for $d \geq 2$ the minima are still worse (see Table 4).

One may conclude that the results for the PCS model are worse than for the ΛCDM, but this conclusion depends on a data selection. In particular, any comparison of these models is very sensitive to BAO and $H(z)$ data with high z ($z > 2$). If we exclude 3 data points [20, 25, 26] for $H(z)$ with $z > 2$ and the corresponding point $d_z(z = 2.34) = 0.032$ [26] from Table 1, we obtain other values presented at the right side of Table 3 and in Table 4. We see that under the data restriction $z < 2.3$ the PCS model yields better fit than the ΛCDM.

In Fig. 3 all presented level lines and graphs correspond to all data with $N_H = 34$ with only exceptions for dependencies of $\min \chi^2_\Sigma$ on H_0, Ω_k and Ω_b, where graphs for all data with $N_H = 34$ are solid blue lines, but the similar graphs for restricted data with $N_H = 31$ are shown as red dash-and-dot lines. The minimum values for these lines are in Table 4.

Table 4: Optimal values of model parameters for the PCS model [30], $\Omega_b = 0.047$.

<table>
<thead>
<tr>
<th>$N_H = 34$ (all data)</th>
<th>$N_H = 31$ ($z < 2.3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$\min \chi^2_\Sigma$</td>
</tr>
<tr>
<td>1</td>
<td>598.08</td>
</tr>
<tr>
<td>2</td>
<td>601.04</td>
</tr>
<tr>
<td>3</td>
<td>602.52</td>
</tr>
<tr>
<td>6</td>
<td>603.85</td>
</tr>
<tr>
<td>d</td>
<td>$\min \chi^2_\Sigma$</td>
</tr>
<tr>
<td>1</td>
<td>591.41</td>
</tr>
<tr>
<td>2</td>
<td>591.76</td>
</tr>
<tr>
<td>3</td>
<td>591.95</td>
</tr>
<tr>
<td>6</td>
<td>592.15</td>
</tr>
</tbody>
</table>
5. Conclusion

In this paper we used the ΛCDM and the multidimensional PCS model [30] for describing the observational data for type Ia supernovae [4], BAO (Table 1) and \(H(z) \) (Table 2). Here we included 14 BAO data points in Table 1 (in comparison with 7 data points in our previous investigation [32]).

When we calculated how absolute minimum (over other parameters) \(m \) in \(\chi^2_\Sigma(p) \) depend on a fixed parameter \(p \) (see Figs. 1, 3), we obtained the following \(1\sigma \) estimates for parameters of the ΛCDM and PCS (\(d = 1 \)) models:

<table>
<thead>
<tr>
<th>Model(d = 1)</th>
<th>(\min \chi^2_\Sigma)</th>
<th>(H_0)</th>
<th>(\Omega_k)</th>
<th>(\Omega_m)</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM</td>
<td>593.91</td>
<td>70.20(^{+0.319}_{-0.316})</td>
<td>(-0.045 \pm 0.032)</td>
<td>0.276 (\pm 0.008)</td>
<td>(\Omega_L = 0.769^{+0.029}_{-0.03})</td>
</tr>
<tr>
<td>PCS</td>
<td>598.08</td>
<td>69.45(^{+0.35}_{-0.34})</td>
<td>(-0.08 \pm 0.045)</td>
<td>0.286 (\pm 0.010)</td>
<td>(\alpha = -0.26^{+0.03}_{-0.032})</td>
</tr>
</tbody>
</table>

Our estimates for the ΛCDM are in agreement with the WMAP observational restrictions (21) on \(\Omega_m, \Omega_L, \Omega_k \) [6], but they are in tension with the Planck data [8] (because of too low value \(H_0 = 67.3 \text{ km} \text{ c}^{-1} \text{ Mpc}^{-1} \) in the Planck survey [8]).

On the expanded data base we confirmed the main conclusion of Ref. [32]: the ΛCDM model is the most effective in describing the mentioned observational data for type Ia supernovae, BAO and \(H(z) \) if this data includes the estimations [20, 25, 26] of \(H(z) \) and \(d_L(z) \) for \(z \geq 2.3 \). In this case the minimal value \(\min \chi^2_\Sigma = 593.91 \) (20) for the ΛCDM is less than \(\min \chi^2_\Sigma \approx 598.08 \) for the PCS model.

The weighty argument in favor of the ΛCDM is its small number \(N_p \) of model parameters (degrees of freedom). This number plays the important role in information criteria of model selection statistics, in particular, in the Akaike information criterion [35]:

\[
AIC = \min \chi^2_\Sigma + 2N_p.
\]

This criterion supports the leading position of the ΛCDM model.

On another hand, if we exclude the mentioned 4 data points with \(z \geq 2.3 \) [20, 25, 26] we shall obtain the minimum \(\min \chi^2_\Sigma = 591.41 \) for the PCS model less than the value 592.42 for the ΛCDM and the model PCS [30] describes the reduced set of data with \(z < 2 \) better than the ΛCDM. The best fit is for \(d = 1 \), the optimal value of \(H_0 \approx 69.86 \text{ km} \text{ c}^{-1} \text{ Mpc}^{-1} \).

So the final conclusion about the effectiveness of the PCS model [30] depends on data selection and on possible model dependence of observational data, in particular, data for \(z \geq 2.3 \) from Refs. [20, 25, 26].

References

