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.1 Introduction

The geometry of smooth foliations was studied in [1]–[8] by one of the authors of
this article. He used the methods described in [9], [10]. In this paper, we show how
to investigate the geometry of smooth foliations by the classical Elie Cartan method
of external forms and moving frame. The method was enhanced by a number of
geometers, especially German Laptev, see, e.g. [11]–[13]. In particular, in [13] the
invariant theory of differentiable mappings of a smooth manifold into a manifold of
higher dimension was constructed. We develop the theory for smooth submersions.
At the beginning we provide the canonical form of the structure equations of a
smooth submersion, then we show that G-structures of the first and second orders
and some three-valent tensor canonically associated with a submersion. In the
second part, we consider in detail the foliation of two-dimensional surfaces in three-
dimensional Euclidean space. We find the differential invariants of the foliation
and explain their geometric meaning. In particular, it is shown that the algebra of
invariants of this foliation is generated by the invariants of the second differential
neighbourhood.

.2 The canonical structure equations of a smooth submer-

sion

Let M and X be the smooth manifolds of dimensions n and r respectively, n > r
and f : M → X be a smooth map (submersion). Following [11] we write the
structure equations of the manifold M in the form

dωi =ωj ∧ ωi
j ,

dωi
j =ωk

j ∧ ωi
k + ωk ∧ ωi

jk,

dωi
jk =ωm

jk ∧ ωi
m − ωi

mk ∧ ωm
j − ωi

jm ∧ ωm
k + ωm ∧ ωi

jkm, . . .

(1)

Here, ωi, i, j, k,m, ... = 1, 2, . . . n, are the basic differential forms of the manifold
M depending on the differentials dxi, where xi are the local coordinates on M .

It is known [12], that the forms ωi and ωi
j form the basis of the bundle H1(M) of

first-order coframes of M ; the forms ωi, ωi
j, ω

i
jk form the basis of the bundle H2(M)

of the second order coframes of M , etc.
Similarly, we write the structure equations of the manifold X :

dϑa =ϑb ∧ ϑa
b ,

dϑa
b =ϑc

b ∧ ϑa
c + ϑc ∧ ϑa

bc,

. . .

(2)

Here, ϑa, a, b, c, ... = 1, 2, . . .m, are the basic differential forms of the manifold X
depending on the differentials dua, where ua are the local coordinates on X .

In local coordinates, the submersion f can be given by the equations u = f(x).
By differentiating this equation and replacing the differentials of variables on the
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invariant forms ωi and ϑa, we obtain the differential equation of the submersion f
in the invariant form

ϑa = λa
i ω

i. (3)

The functions λa
i = λa

i (x, u) form the first order geometrical-differential object of f
[11].

Submersion f defines on the manifold M the foliation Φ with leafs of codimen-
sion m, and X is the base of the foliation. A leaf of Φ is located by fixation of a
point of X , that is, by the equations ua =const. These equations are equivalent to
ϑa = 0, and from (3) the differential equations of the foliation Φ follow:

λa
i ω

i = 0. (4)

Pseudogroup of local diffeomorphisms acts on the manifold M , we denote it
by P. Let Q be the similar group, acting on X . If there are not any additional
structures on manifolds M and X , then submersion f and foliation Φ must be
considered up to transformations of the pseudogroup P ×Q.

The following statement is given without proof.

Theorem 1. Let f : M → X be a smooth submersion, and the structure equations of

the manifolds M and X are written as (1) and (2). Then the bases of the co-frame

bundles of the first, second, etc. orders on manifolds M and X can be chosen in

such a way that the equations

ϑa = ωa, ϑa
b = ωa

b , ωa
bc = ϑa

bc, . . .

hold for any number of sub-indices.

If the above relations hold we will say that the structures of manifolds M and X
canonically agree with respect to submersion f . In this case the structure equations
(2) of manifold X are part of the structure equations (1) of the manifold M , which
we will call the canonical structure equations of submersion f or foliation Φ.

.3 Invariants of 2-dimensional foliation in three-dimensional

Euclidean space

3.1 The equations of submersion f : E3 → R

Let f : E3 → R be a smooth function and E
3 be the three-dimensional Euclidean

space. In E
3, we will use orthonormal frames. Therefore, the previous arguments

have to change a little, as now we put some additional conditions on the frame
bundles.

Let p be an arbitrary point of E3 and simultaneously p be the radius vector
of this point; ei be the moving orthonormal frame, i, j, k, ... = 1, 2, 3. We put, as
usual,

dp = ωiei, dei = ωj
i ej . (5)



Local invariants of smooth foliations 51

The 1-forms ωi and ωj
i satisfy the structure equations of Euclidean space:

dωi = ωj ∧ ωi
j, dωi

j = ωk
j ∧ ωi

k, (6)

and the relations

ωi
j = −ωj

i , ω
i
i = 0, (7)

which are derived from orthonormality conditions. It is known [14] that the forms
ωi and ωi

j are the invariant forms of the group D3 of Euclidean motions.

In the case considered m = 1, so the equations (2) take the form

dϑ1 = ϑ1 ∧ ϑ1

1
, dϑ1

1
= ϑ1 ∧ ϑ1

11
, dϑ1

11
= ϑ1

1
∧ ϑ1

11
+ ϑ1 ∧ ϑ1

111
, . . . (8)

If we change the given co-bases on R by the relations ϑ̃1 = qϑ1 then the forms
ϑ1

1
, ϑ1

11
, . . . , are transformed as follows:

ϑ̃1

1
= ϑ1

1
− dq/q, ϑ̃1

11
= q−1ϑ1

11
, ϑ̃1

111
= q−2ϑ1

111
, . . . .

There are two reasons for adapting the family of orthonormal frames in E
3

1) to simplify the equations (4) of foliation Φ, and 2) to simplify the equations of
submersion f . Usually, the leaf V (a two-dimensional surface) in E

3 is given by the
equation ω3 = 0. In this case vectors e1 and e2 of the moving frame tangent to V ,
and vector e3 is orthogonal to V . In this case the admissible transformations have
the form

ω̃3 = ω3, ω̃a = pabω
b,

where a, b = 1, 2 and (pab ) is an orthogonal matrix. By choosing the family of frames,
we get the equations of submersion in the form ϑ1 = λω3. By replacing ϑ1 → λϑ1

we reduce these submersion equation to the form

ϑ1 = ω3. (9)

On the other hand, an arbitrary diffeomorphism Q → Q should be written in
the form ϑ̃1 = qϑ1 or, in view of (9), in the form ω̃3 = qω3. Comparing it with the
above mentioned admissible transformations we find q = 1, so every difffeomorfism
Q → Q can be written in the form

ω̃3 = ω3. (10)

It follows that the pseudogroup of the gauge transformations ϑ1 → qϑ1 on R is
trivial, that is, the calibration is fixed. We can see from these considerations that
non-trivial gauge transformations arise only in the case when a non-orthonormal
moving frame is used, that is, the normal vector field on V is not necessarily a unit
one. In what follows we put q = 1 (the calibration is fixed) then the equations (9)
and (10) are fulfilled.
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3.2 The canonical frame of submersion f : E3 → R

Exterior differentiation of equation (9) by means of (6) – (8) in view of (9) leads to

ω1 ∧ ω3

1
+ ω2 ∧ ω3

2
= ω3 ∧ ϑ1

1
.

Cartan’s lemma implies:

ω3

1
= a11ω

1 + a12ω
2 + a1ω

3, ω3

2
= a21ω

1 + a22ω
2 + a2ω

3, a12 = a21, (11)

and
ϑ1

1
= −a1ω

1 − a2ω
2 + a3ω

3. (12)

Note that by substituting this expression into the first equation of system (8)
we obtain an expression for the form dω3, which follows also from the first series of
the equations (6) and the equations (11):

dω3 = a1ω
1 ∧ ω3 + a2ω

2 ∧ ω3. (13)

Exterior differentiation of equations (11) gives

▽ a11 ∧ ω1 +▽a12 ∧ ω2 +▽a1 ∧ ω3 = 0,

▽ a12 ∧ ω1 +▽a22 ∧ ω2 +▽a2 ∧ ω3 = 0.

Here
▽a11 = da11 − 2a12ω

2

1
,

▽a12 = da12 − a11ω
1

2
− a22ω

2

1
,

▽a22 = da22 − 2a12ω
1

2
,

▽a1 = da1 − a2ω
2

1
+ a11ω

3

1
+ a12ω

3

2
+ (a1)

2ω1 + a1a2ω
2,

▽a2 = da2 − a1ω
1

2
+ a12ω

3

1
+ a22ω

3

2
+ a1a2ω

1 + (a2)
2ω2.

(14)

Using Cartan’s lemma from the above quadratic equations we obtain

▽a11 = a111ω
1 + a112ω

2 + a113ω
3,

▽a12 = a112ω
1 + a122ω

2 + a123ω
3,

▽a22 = a122ω
1 + a222ω

2 + a223ω
3,

▽a1 = a113ω
1 + a123ω

2 + b11ω
3,

▽a2 = a123ω
1 + a223ω

2 + b22ω
3.

(15)

By differential prolongation of the equation (12) we get

da3 + ϑ1

11
= a33ω

3+

(−b11 − a1a3 + 2a1a11 + 2a2a12)ω
1 + (−b22 − a2a3 + 2a1a12 + 2a2a22)ω

2,
(16)

where a33 is a new function.
Fix a point p by setting ωi = 0. Then from (16) we get the equation

δa3 + π1

11
= 0,
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where, as usual, πi
j = ωi

j(modωi), and δ is the symbol of differentiation with respect
to secondary parameters. This equality shows that by fixing the variable a3 we can
reduce the form π1

11
to zero. In other words, we can constrict the family of frames,

using only those in which the form ϑ1

11
is the principal one. Suppose, for example,

a3 = 0, then from (16) we obtain the expression for the form ϑ1

11
:

ϑ1

11
= a33ω

3 + (−b11 + 2a1a11 + 2a2a12)ω
1 + (−b22 + 2a1a12 + 2a2a22)ω

2. (17)

As a result of such a canonization the equation (12) takes the form:

ϑ1

1
= −a1ω

1 − a2ω
2. (18)

If we differentiate the equation (18) using the second equation (8), equation (16)
(under the condition a3 = 0), the last two equations (14) and structure equa-
tions (6), we obtain the identity.

Next, we reason similarly. We differentiate (17), next apply Cartan’s lemma
and put in the resulting equations ωi = 0. After calculations we obtain the equality

δa33 + π1

111
= 0.

By fixing a33 = 0 we can reduce the form π1

111
to zero. Then the equation (17) takes

the form

ϑ1

11
= (−b11 + 2a1a11 + 2a2a12)ω

1 + (−b22 + 2a1a12 + 2a2a22)ω
2. (19)

Continuing the induction argument we obtain the following

Theorem 2. Let f : E3 → R be a submersion, and the space E
3 is related to or-

thonormal frame, and structure equations of pseudo-group transformations on R

are written in the form (8). Then the pseudo-group of gauge transformations is

trivial, and the families of frames on E
3 and on R can be chosen so that the form

ω3 is the principal one on R and there are the frames of the first, second, etc. or-

ders such that the equations (9), (12), (19) and etc hold, and these equations are

completely integrable on the manifold E
3 × R.

We will call the frame indicated in the Theorem 2 the canonical frame R∞ of

the submersion f : E3 → R. If only equation (9) is fulfilled, we will say that there
is a canonization of the first order and will denote the corresponding frames by R1.
If the equations (9)and (18) are fulfilled we will say that there is a canonization of
the second order and will denote the corresponding frames by R2, etc.

Explain the geometric meaning of the canonization. We put ω1 = ω2 = 0,
then from the first series of equations (5) we get dp = ω3e3 and from (13) we get
dω3 = 0, which implies ω3 = ds. Consequently, the point p describes an orthogonal
trajectory (we denote it by ℓ) of the foliation Φ and s is the natural parameter on
the ℓ. On the other hand, since the forms ϑ1

1
, ϑ1

11
, . . . are zero by the condition

ω1 = ω2 = 0, equations (8) are reduced to the single equation dϑ1 = 0 or dω3 = 0.
So, a structure of one-dimensional Euclidean space with the canonical parameter
s (Cartesian coordinate) arises on R. Thus the manifold R being the base of the

foliation Φ is canonically embedded in E
3 as a orthogonal trajectory of this foliation.
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3.3 Pseudogroup of transformations in E
3 × R

As is already noted, we considered the submersion of f and the foliation Φ up
to transformations of pseudo-group P × Q. In our case, P is the group D3 of
Euclidean motions. In terms of invariant forms ωi and ωi

j the action of group D3

can be written in the form
ω̃3 = ω3, ω̃a = pabω

b,

where a, b = 1, 2 and (pab) is an orthogonal matrix. The last equations can be
simplified by choosing the canonical frame, whose vectors e1 and e2 are tangent to
leaf V along the principal directions of V . Then the previous equations take the
form

ω̃i = ωi. (20)

By differentiating these equations with the help of structure equations (6) in view
of (20) we obtain ωj ∧ (ωi

j − ω̃i
j) = 0. From that we get ωi

j − ω̃i
j = cijkω

k, cijk = cikj .

On the other hand, by (7) we get cijk = −cjik. We have: cijk = −cjik = −cjki = ckji =

ckij = −cikj = −cijk, so cijk = 0 and we get the equations ωi
j = ω̃i

j . By integrating
these equations together with the equations (18) we obtain, see [15], the action of
the group D3 on itself.

An arbitrary diffeomorphism R → R of Q has the form (10) or

ϑ̃1 = ϑ1. (21)

Differential prolongation of this equation gives ϑ̃1

1
= ϑ1

1
+ kω3 or

ã1ω̃
1 + ã2ω̃

2 = a1ω
1 + a2ω

2 + kω3.

Since the forms ω1 and ω2 allow only orthogonal transformation of the form ω̃a =
pabω

b (see above), we have k = 0 and co-vector ã(ã1, ã2) is obtained from covector
a(a1, a2) by inverse orthogonal transformation. We write that in the form

ã = Π(a). (22)

This equation is equivalent to
ϑ̃1

1
= ϑ1

1
. (23)

In view of (19) differential prolongation of equation (23) gives

B̃11 = Π(B11), (24)

where B11 is a co-vector with coordinates

(−b11 + 2a1a11 + 2a2a12, −b22 + 2a1a12 + 2a2a22),

and the co-vector B̃11 has the same coordinates with the wave.
On induction, we obtain the sequence of co-vectors a, B11, B111 . . . , which are

converted by the operator Π into the similar quantities, but calculated at a different
point.

We proved
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Theorem 3. Let a submersion f : E3 → R with trivial pseudo-group of gauge trans-

formations be related to the canonical frame R∞. Then the action of pseudo-group

transformations on R is the direct product of transformation (10), which trans-

form the leaf V into the leaf Ṽ , and the operator Π, that ”transplant” invariant

co-vectors from leaf V into the leaf Ṽ along orthogonal trajectories.

3.4 Invariants of the foliation under group D3 action

Equations (14) and (15) imply

δa11 − 2a12π
2

1
= 0, δa12 − a11π

1

2
− a22π

2

1
= 0, δa22 − 2a12π

1

2
= 0, (25)

where the symbols δ and π have the same meaning as above. From equations (25)
we get the equations

δ(a11a22 − (a12)
2) = 0, δ(a11 + a22) = 0,

which means that the functions a11a22 − (a12)
2 and a11 + a22 are invariants with

respect to admissible transformations of the frame (coframe).
Equations (25) can be written as

δaab + acbπ
c
a + aacπ

c
b = 0, δaa + abπ

b
a = 0.

The equations show that the quantities aab and aa form tensors with respect to
admissible transformations. Let us find geometric meaning of the tensors.

Completely integrable equation

ω3 = 0 (26)

allocates a leaf of foliation Φ that is a two-dimensional surface V . On V , equations
(11) take the form

ω3

1
= a11ω

1 + a12ω
2, ω3

2
= a21ω

1 + a22ω
2. (27)

Using (16) and (27) we find from (5)

dp = ω1e1 + ω2e2, d2p = (...)e1 + (...)e2 + a11(ω
1)2 + 2a12ω

1ω2 + a22(ω
2)2.

As we can see, the tensor auv is the asymptotic tensor of the surface V , and the
asymptotic form of V is ϕ2 = a11(ω

1)2 + 2a12ω
1ω2 + a22(ω

2)2. The first quadratic
form of V is (dp)2 = (ω1)2 + (ω2)2. Hence it is easy to find Gauss curvature and
mean curvature of V :

K = a11a22 − (a12)
2, 2H = a11 + a22.

Let us consider the domain of non-umbilical points on V and restrict the family
of adapted frames by putting a12 = 0. Then we get the so-called canonical frame
of the surface V . In this case from (25) we find δa11 = δa22 = 0, that is, the values
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a11 and a22 became the invariants. It is well known that these are the principal
curvatures of the surface V . Because the surface V is not umbilical we have k1 6= k2
and the form ω2

1
can be found from the second equation (15). In this case, the

coordinate directions on V defined by vectors e1 and e2 are the principal directions
of V .

To explain the geometric meaning of the invariant co-vector au, consider the
foliation Φ⊥ of orthogonal trajectories of the foliation Φ. It is given by the equations

ω1 = ω2 = 0. (28)

Let, as above, ℓ be an arbitrary curve from Φ⊥, p ∈ ℓ. In view of (28) we get
dp = ω3e3,ω

3 = ds. Taking into account (7) and (11) we have

dp

ds
= e3,

d2p

ds2
=

ω1

3
e1ω

2

3
e2

ω3
= −a1e1 − a2e2.

As we can see, the vector −a1e1 − a2e2 is the so-called curvature vector of ℓ. Two
invariants are associated with it: the curvature k = |−a1e1−a2e2| = ((a1)

2+(a2)
2)

1

2

of the curve ℓ and the angle between curvature vector and one of the principal
directories surface V . In the canonical frame the values a1 and a2 will be the
invariants, namely, the projections of curvature vector on the principal directions
of V .

By similar reasoning we can find the geometrical meaning of differential invari-
ants of arbitrary order.

3.5 Algebra of invariants of foliation f : E3 → R

Consider in E
3 the canonical frame, then the equality a12 = 0 is fulfilled. In

this case, all functions at the structure equations (11), (15) and the subsequent
equations received by standard differential prolongation are the invariants with
respect to group D3 × Q action, where D3 is the group of Euclidean motions of
E
3 and Q is the pseudo-group of local diffeomorphisms of R. In the differential

neighbourhood of the second order there are 4 independent invariants: a11, a22, a1
and a2.

To find the differential invariants in the differential neighbourhood of the third
order, rewrite equation (15) using (14) and the condition a12 = 0. After some
calculations transformations we get

da11 = a111ω
1 + a112ω

2 + a113ω
3,

da22 = a122ω
1 + a222ω

2 + a223ω
3,

da1 = (aa2a112 − (a1)
2 − (a11)

2 + a113)ω
1+

(aa2a122 − a1a2 + a123)ω
2 + b̃11ω

3,

da2 = (−aa1a112 − a1a2 + a123)ω
1+

(−aa1a122 − (a2)
2 − (a22)

2 + a223)ω
2 + b̃22ω

3,

(29)
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where

a = (a11 − a22)
−1, b̃11 = aa2a123 − a1a11 + b11, b̃22 = −aa1a123 − a2a22 + b22.

Coefficients of the basic forms in the right sides of equations (29) are invariants of
the differential neighbourhood of the third order. As we can see, they are derivatives
of the invariants with respect to invariant directions, that is, by differentiation along
the principal directions of the surface V and along the curve ℓ.

As we can see from equations (15), in the differential neighbourhood of the third
order only 12 invariants can be obtained, 9 of them (a111, a112, a113, a122, a222, a223,
a123, b̃11b̃22) being independent, and the remaining 3 are expressed in terms of the
first 9 invariants. Coordinates of the co-vectors a, B11, B111 . . . , (being invariants)
are also expressed in terms of the above mentioned 9 invariants.

In the same way, other invariants can be found, that is, by differentiation of the

invariants of the previous differential neighbourhood along the principal directions.
In this case we say that the invariants algebra is generated by the invariants of a11,
a22, a1 and a2.

A role of the invariants a11, a22, a1 and a2 can be seen from the following
statement.

Equivalence Theorem. Let there be given the foliation f : E3 → R, with the

structure equations (6), (7), (11), (15), etc., and the foliation f̃ : Ẽ3 → R̃, defined

by structure equations of the same form but in which the forms ωi
j and the functions

a11, a22, a1, a2, etc. are equipped by tilde. Suppose the corresponding invariants

of the differential neighbourhood of the second order of these foliations coincide.

Then foliations f and f̃ are equivalent, i.e., there is a Euclidean motion which the

foliation f transform into foliation f̃ .
� For simplicity we assume that the structure equations of both foliations are

written in the canonical frame (a12 = ã12 = 0). Then, under the hypothesis of the
theorem, we can write the equalities

a11 = ã11, a22 = ã22, a1 = ã1, a2 = ã2. (30)

Let us consider the equations

ω̃i = ωi, (31)

on the direct product Ẽ3× Ẽ
3. By (30) and (31) from (11) we obtain ω3

1
= ω̃3

1
, ω3

2
=

ω̃3

2
, and from (28) — a111 = ã111, a112 = ã112, etc. In their turn, these equations

imply the equality ω2

1
= ω̃2

1
. Using the obtained equality we get the relation d(ωi−

ω̃i) = 0. Therefore, by Frobenius’ theorem, the system (31) is completely integrable.
Its integral manifold is the graph of the mapping ϕ : Ẽ3 → Ẽ

3 which is uniquely
determined by given initial conditions. But equations (31) coincide with equations
(20), which (see Section 3.3) determine the group of Euclidean motions. As can
we see from the equations (31), ϕ maps the leaves of foliation Φ onto the leaves of

foliation Φ̃. �
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.4 Conclusion

Similar results can be obtained if the pseudogroup of gauge transformations is not
trivial.
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