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Abstract. We claim that the well-known Stefan condition on the moving inter-
phase, accepted in mathematical physics, can not be imposed if energy sources are
spatially distributed in the volume. A method based on Tikhonov and Samarskii
ideas for numerical solution of the problem is developed. It treats the heat of
fusion as an additional term in the expression for thermal capacity of the ma-
terial. Mathematical modeling of energy relaxation of some processes useful in
modern ion beam technologies is fulfilled. Necessity of taking into account effects
completely outside the Stefan formulation is demonstrated.
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.1 Introduction

The Stefan problem concerns solid-liquid or liquid-vapor phase transitions when
moving unknown beforehand surface S of phase transition is formed (see, e.g., [1]).
In fact, a formulation of the Stefan problem was given for the first time by G. Lame
and B.P. Clapeiron in 1831 for a particular case of equal temperature of liquid
and crystalline phases [2]. In 1889 J. Stefan published four papers devoted to the
subject (in particular, to the description of soil freezing) in which the problem was
formulated in a general form [3]. According to it, for the interphase the following
condition

Ksol

∂T (xS + 0, t)

∂x
−Kliq

∂T (xS − 0, t)

∂x
= LρsolVS, (1)

defining Stefan’s problem, has been suggested. Here VS = dξS/dt is the velocity
of the boundary surface S, Ksol and Kliq are thermal conductivities of material for
solid and liquid phases, L and ρsol are the melting heat and density, correspondingly
and xS is the spatial coordinates of boundary surface. Condition (1) has a clear
physical meaning. Indeed, according to the Fourier law, heat flow j is proportional
to the temperature gradient,

j = −K grad T.

Therefore, the left-hand side of (1) is the heat absorbed in the unit of area per
the unit of time. The expression in the right-hand side is the heat connected with
freezing or melting of material crossed per the unit of time by the the unit of area.

A complete mathematical formulation of the Stefan problem includes, besides (1),
a condition of continuity on the surface S separating solid and liquid phases

T |S = T ∗, (2)

where T ∗ denotes temperature of the phase transition, and the energy conservation
law

ρC
∂T

∂t
= −div j + q(x, t).

Here q(x, t) represents the power of external heat sources, C is the specific heat.
In the original Stefan papers q(x, t) ≡ 0, so that the whole heat transfer has been
considered to be a consequence of the temperature gradient inside the medium.

If one also specifies initial and boundary conditions, the Stefan problem can be
solved more often approximately, but sometimes exactly. Particular examples of
suitable boundary conditions are considered below.

Relations (1) and (2) are usually used in numerical algorithms explicitly. An-
other approach was suggested by A.N. Tikhonov and A.A. Samarskii in 1953 [4].
According to it, conditions (1) and (2) are included themselves into the energy
conservation equation to obtain generalized formulation of the Stefan problem in
the form

(ρC + L δ(T − T ∗))

(

∂T

∂t
+ v grad T

)

= div(K grad T ) + q(x, t), (3)
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where the term L δ(T − T ∗) ∂T/∂t describes the additional heat input expended
on the phase transformation, v grad T takes into account possible temperature
change due to convection (hereafter we ignore it for simplicity). The main idea of
this approach is quite clear, too. Namely, it is suggested to treat the heat of fusion
L as an additional component of the thermal capacity ρC which gives contribution
only at the point of phase transition.

Lately Samarskii and his followers have turned this idea into effective numerical
algorithms (see, e.g. [5]). But even in those papers equation (3) is considered only as
a corollary of the condition (1). For example, it was derived in [1] by substituting
expression L δ(T − T ∗) ∂T/∂t instead of the term L δ(x − ξS(t)) VS, which is
assumed to be included in the heat equation to account for the heat absorption on
2-dimensional interface S.

The purpose of this paper is to show that the condition (3) supplies us with
a more powerful description of phase transitions, that may be used even in the case
when (1) and (2) are not applicable.

.2 Heuristic arguments

As it was mention above, the possibility of solving the classical Stefan problem
by making use of condition (3) has been demonstrated by Samarskii and his co-
authors. Therefore, we only consider an example when (3) is applicable and (1),
(2) are not. To this end let us study the following problem:

(ρC + L δ(T − T ∗))
∂T

∂t
= div(k grad T ) + q(t), (4)

T (x, 0) = T0 < T ∗,

where all parameters of (4) are suggested to be independent of x. Due to the spatial
uniformity, it is evident that the condition

grad T = 0

holds on the solutions of (1). In this case Eq. (4) is reduced to an ordinary differ-
ential one

(ρC + L δ(T − T ∗))
dT

dt
= q(t) (5)

with the initial condition
T (0) = T0.

Integrating both sides of (5) over t just near the phase transition temperature T ∗,
one obtains

∫ T ∗+0

T ∗
−0

(ρC + L δ(T − T ∗)) dT =

∫ t+δt

t

q(t) dt, (6)

where δt is a time necessary for the phase transition. It is evident from (6) that

δt ≥
L

Q
, (7)
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where Q is the maximum value of q(t) in the interval (t, t+ δt). The inequality (7)
means that the phase transition at a fixed spatial point lasts a finite, distinct from
zero, time.

This simple example shows something completely different from the Stefan de-
scription of the phase transition. Let us examine it carefully.

1. First of all, instead of gradual warming (or cooling) up the pattern due to
the influence of one of its boundaries, here we have an uniformly heated
layer. Therefore, creation of 2-D surface S(y, z) separating the solid and
liquid phases in x is evidently impossible due to a total equivalence of all
spatial points x.

2. One can also expect that finiteness of the phase transition time, δt, forces all
points within a spatial layer of nonzero thickness to be at the same tempera-
ture T ∗. This is expected even in the case when the power deposition q(x, t),
unlike in the example considered, is spatially irregular.

If we consider δ-function in (3) as a limit of a bounded function D(T − T ∗)
localized in the vicinity of T = T ∗, then the possibility to obtain

∂T

∂t
−→ 0, grad T −→ 0,

follows from the indefiniteness

D(T − T ∗)
∂T

∂t
−→ ∞ · 0,

springing up in the left-hand side of (3). Clearly, that this indefiniteness can take a
finite value and compensate in a space region with nonzero thickness the spatially
distributed source q(x, t) which contributes to the right-hand side of (3). This, of
course, is no more true if the external sources are absent and heat enters the pattern
only through its boundary.

In a general case, one can expect existence of two jumps for spatial derivatives
of temperature on the boundaries S of the volume V T ∗ with T = T ∗, instead of
one for the classical Stefan problem, but the condition (1) is hardly met for any of
them. Indeed, to prove the existence of two jumps — one from the side of the solid
and another from the side of the melted phase — it is sufficient only to show that
the spatial derivative on the surface S, taken externally, is not equal to zero. The
coordinates of the boundary ~ξ(t) can be found as a solution of an equation

T (x, t)− T ∗ = 0,

where T (x, t) is the solution of the heat equation (3) outside the volume V T ∗ .
Taking the total temporal derivative, one obtains

∂T

∂t
+ grad T ·

d~ξ

dt
= 0.
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Thus grad T = 0 automatically implies ∂T/∂t = 0. It is evident that such conditions
are impossible if the external sources are not adjusted specially to stabilize the
temperature in the infinitesimal layers adjacent to the volume V T ∗ just before and
just after the phase transition.

.3 Numerical simulation of phase transitions

To verify the conclusions which we have just come to, let us study numerically the
dynamics of phase transition induced by a short powerful ion beam in solids. At
present this technology is really used for modification of surface layers to create new
materials with unique physical and chemical properties (see, e.g. [6]). The process
is underlain by the equation for heat transfer which we discussed in the previous
sections:

ρ(T )c(T )
∂T

∂t
=

∂

∂x

(

k(T )
∂T

∂x

)

+ q. (8)

The initial and boundary conditions could be taken in the form:

T (x, 0) = T0,
∂T (0, t)

∂x
=

∂T (l0, t)

∂x
= 0.

Let us consider, for definiteness, an iron pattern, which thermal properties are
described in popular reference books, and choose dimensionless (DL for brevity)
variables

T := T/T0, x := x/l0, t := t/τ

as follows:
T0 = 293 K, l0 = 10−5 m (the pattern thickness),
τ = 3 · 10−7 s (duration of ion beam pulse from an accelerator).
For DL power deposition q we take a simple model with analytical representation

q(x, t) = Q q1(x)q2(t),

where

qi(z) =
1

1 + exp µi(z − zi)
.

Q describe the total DL energy brought into the pattern (here Q = 59.44, x1 =
0.07, t1 = 1, µi = 100). For simplicity, we neglect in (8) a small difference between
physical parameters for the solid and liquid phases.

Now, using of the general idea due to Tikhonov and Samarskii [4], we assume
an expression:

ρ(T )c(T ) = 1 + λδ(T − T ∗,∆)

for DL specific heat, where λ denotes the DL heat of fusion and δ(T − T ∗,∆) is
an approximate δ-function, smoothed with the help of the Gaussian distribution of
width ∆ (see Figure 1)1.

1There were other methods of smoothing in original papers by Samarskii et al. They used

regularization on the space grid.



42 J. Pribǐs
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Figure 1: Approximate δ-function with maximum at T ∗ and smearing equals ∆ (for

∆ = 0.03).

Now Eq. (8) can be solved numerically on the space-time grid x and t with steps
hx and ht, within intervals x ∈ (0, 1), t ∈ (0, tmax):

xj = hx · j, j = 0, . . . , nx, hx = 1/nx,

tk = ht · k, k = 0, . . . , nt, ht = tmax/nt,

where nx and nt are numbers of partitions.
The following difference scheme with weights γ was implemented (see [7] for

details):

ekj
T k+1

j − T k
j

ht

= k0

[

γ
T k+1

j+1
− 2T k+1

j + T k+1

j−1

h2
x

+ (1− γ)
T k
j+1 − 2T k

j + T k
j−1

h2
x

]

+ q
k+ 1

2

j ,

(9)
where

T k
j = T (xj , tk), ekj = ρ(T k

j )c(T
k
j ), q

k+ 1

2

j = q(xj, tk +
ht

2
),

and the upper index numerates different moments of time (time “levels”), the lower
one specifies a set of spatial co-ordinates. The scheme is absolutely convergent at
γ = 0.5 and possesses the second-order accuracy for both variables.

From initial condition T (x, 0) = T0, values T 0
j (j = 0, . . . , nx) on a zero time

level are known. The boundary conditions

T k
1 − T k

−1

2hx

=
T k
nx+1 − T k

nx−1

2hx

= 0, k = 1, . . . , nt

allow one to introduce symmetric points x−1 = −hx and xnx+1 = 1 + hx with
appropriate values T k

−1 = T k
1 and T k

nx+1 = T k
nx−1 respectively. So, we can use the
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Eq. (9) in points x0 and xnx
. Using initial and boundary conditions, we obtain a

system of nx linear algebraical equations with the same number of variables. Thus,
under the accepted approximation, we reduced the partial differential equation (8)
to system (9) of linear algebraic equations. The matrix of this system is tridiagonal
and after its solution1 we obtain value T 1

j (j = 0, . . . , nx) at the first time level.
Repeating this process, values T k

j on every time level k are computed.
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Figure 2: Time dependence of function

φ(t).

Figure 3: Velocity of the boundary sur-

face.

The result of straightforward verification of the Stefan condition (1) is shown in
Figure 2, where the function

φ(t) = k

(

∂T

∂x

∣

∣

∣

∣

TA

−
∂T

∂x

∣

∣

∣

∣

TB

)

− λ
dξ

dt
(10)

is depicted.

The left and right points, in which the spatial derivatives of temperature were
taken in (10), are shown in Figure 1. They define a spatial layer which nearly the
whole fusion energy is absorbed within. From Figure 2 one can see that condition (1)
is satisfied indeed, but only after a characteristic relaxation time t1 has elapsed.
The physical meaning of t1 is clear from Figure 3. Namely, it corresponds to
the transition from a rapid to slow motion of the exterior interphase surface. In
the case when boundary motion is rapid, the heat necessary for fusion is brought
into the melting layer directly from the external source q(x, t). The slow motion
corresponds to the ordinary Stefan mode when the process is controlled mainly by
the heat entered into the layer through its boundary.

1Recursive relations for determining the solution of algebraic problem (9) comprise the well-

known sweep method, called also forward-backward or Thomas algorithm [1].
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It is also seen from Figure 3 that transition to the Stefan mode takes place
earlier than the external source to be totally turned off:

t1 < τ.

Time t2 shown in Figure 3 denotes a moment when the thickness of the melted
material begins to diminish due to heat escape into a more cooler solid phase.
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Figure 4: Spatial temperature distribu-

tion for: 1 – t = 0, 162; 2 – t = 0, 186; 3

– t = 0, 204; 4 – t = 0, 216 (∆ = 0.01)

Figure 5: Evolution of temperature for:

1 – x = 0; 2 – x = 0.04 (∆ = 0.01)

Figure 4 and 5 also confirm the conclusions which we have come to in the previ-
ous section. Formation of the “tableland” (whose height corresponds to the fusion
temperature) for spatial temperature distribution is distinctly seen in Figure 4. The
narrow strip restricted by two dashed lines in Figure 4 and 5 exhibits the width of
the smoothed δ-function. We believe that existence of two breaks for the spatial
derivative is masked in Figure 4 with this δ-function smearing. Figure 5 demon-
strates a temperature evolution for two divorced spatial points. One can make sure
that the above mentioned time interval corresponding to the same temperature at
the different spatial points really exists. It is evident that such a behavior of tem-
perature has nothing to do with the traditional description in the framework of (1)
and (2).

.4 Conclusion

To the best of our knowledge, the peculiarities of phase transition dynamics, we dis-
cussed in this paper, have never been considered explicitly in mathematical physics.
This fact may be explained partially by the necessity to use very powerful spatially
distributed external sources of heat, in order the above mentioned effects to be
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urgent. Such sources were hardly available for industrial applications not long ago.
However, the examples which given above are likely evidences of the fact that such
sources, “interfering” in the thermal conductive processes, are integral parts of all
most recent ion beam technologies. The numerical investigations, which have been
undertaken, show that the δ-function approach to phase transitions is a suitable
instrument to tackle these problems, though the authors of this idea have never
used it in such a context.

Here we have shown that it is more expedient to turn over this order and take
its last element as the basis for solving both the classical Stefan problem and a
more general one including spatially distributed sources. In other words, both of
these solutions could be considered as an idealized limiting case ∆ → 0 of a natural
physical point of view that none of phase transitions take place at the exactly
defined value of fusion temperature.
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